File size: 30,450 Bytes
84a7891
5e78e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84a7891
 
5e78e49
 
 
 
 
84a7891
 
5e78e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84a7891
 
 
 
 
 
 
5e78e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84a7891
5e78e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84a7891
5e78e49
84a7891
 
5e78e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84a7891
5e78e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84a7891
5e78e49
84a7891
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
import spaces
import torch
import librosa
import torchaudio
import numpy as np
from pydub import AudioSegment
from hf_utils import load_custom_model_from_hf

DEFAULT_REPO_ID = "Plachta/Seed-VC"
DEFAULT_CFM_CHECKPOINT = "v2/cfm_small.pth"
DEFAULT_AR_CHECKPOINT = "v2/ar_base.pth"

DEFAULT_CE_REPO_ID = "Plachta/ASTRAL-quantization"
DEFAULT_CE_NARROW_CHECKPOINT = "bsq32/bsq32_light.pth"
DEFAULT_CE_WIDE_CHECKPOINT = "bsq2048/bsq2048_light.pth"

DEFAULT_SE_REPO_ID = "funasr/campplus"
DEFAULT_SE_CHECKPOINT = "campplus_cn_common.bin"

class VoiceConversionWrapper(torch.nn.Module):
    def __init__(
            self,
            sr: int,
            hop_size: int,
            mel_fn: callable,
            cfm: torch.nn.Module,
            cfm_length_regulator: torch.nn.Module,
            content_extractor_narrow: torch.nn.Module,
            content_extractor_wide: torch.nn.Module,
            ar_length_regulator: torch.nn.Module,
            ar: torch.nn.Module,
            style_encoder: torch.nn.Module,
            vocoder: torch.nn.Module,
            ):
        super(VoiceConversionWrapper, self).__init__()
        self.sr = sr
        self.hop_size = hop_size
        self.mel_fn = mel_fn
        self.cfm = cfm
        self.cfm_length_regulator = cfm_length_regulator
        self.content_extractor_narrow = content_extractor_narrow
        self.content_extractor_wide = content_extractor_wide
        self.vocoder = vocoder
        self.ar_length_regulator = ar_length_regulator
        self.ar = ar
        self.style_encoder = style_encoder
        # Set streaming parameters
        self.overlap_frame_len = 16
        self.bitrate = "320k"
        self.compiled_decode_fn = None
        self.dit_compiled = False
        self.dit_max_context_len = 30  # in seconds
        self.ar_max_content_len = 1500  # in num of narrow tokens
        self.compile_len = 87 * self.dit_max_context_len

    def compile_ar(self):
        """
        Compile the AR model for inference.
        """
        self.compiled_decode_fn = torch.compile(
            self.ar.model.forward_generate,
            fullgraph=True,
            backend="inductor" if torch.cuda.is_available() else "aot_eager",
            mode="reduce-overhead" if torch.cuda.is_available() else None,
        )

    def compile_cfm(self):
        self.cfm.estimator.transformer = torch.compile(
            self.cfm.estimator.transformer,
            fullgraph=True,
            backend="inductor" if torch.cuda.is_available() else "aot_eager",
            mode="reduce-overhead" if torch.cuda.is_available() else None,
        )
        self.dit_compiled = True

    @staticmethod
    def strip_prefix(state_dict: dict, prefix: str = "module.") -> dict:
        """
        Strip the prefix from the state_dict keys.
        """
        new_state_dict = {}
        for k, v in state_dict.items():
            if k.startswith(prefix):
                new_key = k[len(prefix):]
            else:
                new_key = k
            new_state_dict[new_key] = v
        return new_state_dict

    @staticmethod
    def duration_reduction_func(token_seq, n_gram=1):
        """
        Args:
            token_seq: (T,)
        Returns:
            reduced_token_seq: (T')
            reduced_token_seq_len: T'
        """
        n_gram_seq = token_seq.unfold(0, n_gram, 1)
        mask = torch.all(n_gram_seq[1:] != n_gram_seq[:-1], dim=1)
        reduced_token_seq = torch.cat(
            (n_gram_seq[0, :n_gram], n_gram_seq[1:, -1][mask])
        )
        return reduced_token_seq, len(reduced_token_seq)
        
    @staticmethod
    def crossfade(chunk1, chunk2, overlap):
        """Apply crossfade between two audio chunks."""
        fade_out = np.cos(np.linspace(0, np.pi / 2, overlap)) ** 2
        fade_in = np.cos(np.linspace(np.pi / 2, 0, overlap)) ** 2
        if len(chunk2) < overlap:
            chunk2[:overlap] = chunk2[:overlap] * fade_in[:len(chunk2)] + (chunk1[-overlap:] * fade_out)[:len(chunk2)]
        else:
            chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out
        return chunk2

    def _stream_wave_chunks(self, vc_wave, processed_frames, vc_mel, overlap_wave_len, 
                           generated_wave_chunks, previous_chunk, is_last_chunk, stream_output):
        """
        Helper method to handle streaming wave chunks.
        
        Args:
            vc_wave: The current wave chunk
            processed_frames: Number of frames processed so far
            vc_mel: The mel spectrogram
            overlap_wave_len: Length of overlap between chunks
            generated_wave_chunks: List of generated wave chunks
            previous_chunk: Previous wave chunk for crossfading
            is_last_chunk: Whether this is the last chunk
            stream_output: Whether to stream the output
            
        Returns:
            Tuple of (processed_frames, previous_chunk, should_break, mp3_bytes, full_audio)
            where should_break indicates if processing should stop
            mp3_bytes is the MP3 bytes if streaming, None otherwise
            full_audio is the full audio if this is the last chunk, None otherwise
        """
        mp3_bytes = None
        full_audio = None
        
        if processed_frames == 0:
            if is_last_chunk:
                output_wave = vc_wave[0].cpu().numpy()
                generated_wave_chunks.append(output_wave)

                if stream_output:
                    output_wave_int16 = (output_wave * 32768.0).astype(np.int16)
                    mp3_bytes = AudioSegment(
                        output_wave_int16.tobytes(), frame_rate=self.sr,
                        sample_width=output_wave_int16.dtype.itemsize, channels=1
                    ).export(format="mp3", bitrate=self.bitrate).read()
                    full_audio = (self.sr, np.concatenate(generated_wave_chunks))
                else:
                    return processed_frames, previous_chunk, True, None, np.concatenate(generated_wave_chunks)

                return processed_frames, previous_chunk, True, mp3_bytes, full_audio

            output_wave = vc_wave[0, :-overlap_wave_len].cpu().numpy()
            generated_wave_chunks.append(output_wave)
            previous_chunk = vc_wave[0, -overlap_wave_len:]
            processed_frames += vc_mel.size(2) - self.overlap_frame_len

            if stream_output:
                output_wave_int16 = (output_wave * 32768.0).astype(np.int16)
                mp3_bytes = AudioSegment(
                    output_wave_int16.tobytes(), frame_rate=self.sr,
                    sample_width=output_wave_int16.dtype.itemsize, channels=1
                ).export(format="mp3", bitrate=self.bitrate).read()

        elif is_last_chunk:
            output_wave = self.crossfade(previous_chunk.cpu().numpy(), vc_wave[0].cpu().numpy(), overlap_wave_len)
            generated_wave_chunks.append(output_wave)
            processed_frames += vc_mel.size(2) - self.overlap_frame_len

            if stream_output:
                output_wave_int16 = (output_wave * 32768.0).astype(np.int16)
                mp3_bytes = AudioSegment(
                    output_wave_int16.tobytes(), frame_rate=self.sr,
                    sample_width=output_wave_int16.dtype.itemsize, channels=1
                ).export(format="mp3", bitrate=self.bitrate).read()
                full_audio = (self.sr, np.concatenate(generated_wave_chunks))
            else:
                return processed_frames, previous_chunk, True, None, np.concatenate(generated_wave_chunks)

            return processed_frames, previous_chunk, True, mp3_bytes, full_audio

        else:
            output_wave = self.crossfade(previous_chunk.cpu().numpy(), vc_wave[0, :-overlap_wave_len].cpu().numpy(), overlap_wave_len)
            generated_wave_chunks.append(output_wave)
            previous_chunk = vc_wave[0, -overlap_wave_len:]
            processed_frames += vc_mel.size(2) - self.overlap_frame_len

            if stream_output:
                output_wave_int16 = (output_wave * 32768.0).astype(np.int16)
                mp3_bytes = AudioSegment(
                    output_wave_int16.tobytes(), frame_rate=self.sr,
                    sample_width=output_wave_int16.dtype.itemsize, channels=1
                ).export(format="mp3", bitrate=self.bitrate).read()
                
        return processed_frames, previous_chunk, False, mp3_bytes, full_audio

    def load_checkpoints(
            self,
            cfm_checkpoint_path = None,
            ar_checkpoint_path = None,
    ):
        if cfm_checkpoint_path is None:
            cfm_checkpoint_path = load_custom_model_from_hf(
                repo_id=DEFAULT_REPO_ID,
                model_filename=DEFAULT_CFM_CHECKPOINT,
            )
        if ar_checkpoint_path is None:
            ar_checkpoint_path = load_custom_model_from_hf(
                repo_id=DEFAULT_REPO_ID,
                model_filename=DEFAULT_AR_CHECKPOINT,
            )
        # cfm
        cfm_checkpoint = torch.load(cfm_checkpoint_path, map_location="cpu")
        cfm_length_regulator_state_dict = self.strip_prefix(cfm_checkpoint["net"]['length_regulator'], "module.")
        cfm_state_dict = self.strip_prefix(cfm_checkpoint["net"]['cfm'], "module.")
        self.cfm.load_state_dict(cfm_state_dict, strict=False)
        self.cfm_length_regulator.load_state_dict(cfm_length_regulator_state_dict, strict=False)

        # ar
        ar_checkpoint = torch.load(ar_checkpoint_path, map_location="cpu")
        ar_length_regulator_state_dict = self.strip_prefix(ar_checkpoint["net"]['length_regulator'], "module.")
        ar_state_dict = self.strip_prefix(ar_checkpoint["net"]['ar'], "module.")
        self.ar.load_state_dict(ar_state_dict, strict=False)
        self.ar_length_regulator.load_state_dict(ar_length_regulator_state_dict, strict=False)

        # content extractor
        content_extractor_narrow_checkpoint_path = load_custom_model_from_hf(
            repo_id=DEFAULT_CE_REPO_ID,
            model_filename=DEFAULT_CE_NARROW_CHECKPOINT,
        )
        content_extractor_narrow_checkpoint = torch.load(content_extractor_narrow_checkpoint_path, map_location="cpu")
        self.content_extractor_narrow.load_state_dict(
            content_extractor_narrow_checkpoint, strict=False
        )

        content_extractor_wide_checkpoint_path = load_custom_model_from_hf(
            repo_id=DEFAULT_CE_REPO_ID,
            model_filename=DEFAULT_CE_WIDE_CHECKPOINT,
        )
        content_extractor_wide_checkpoint = torch.load(content_extractor_wide_checkpoint_path, map_location="cpu")
        self.content_extractor_wide.load_state_dict(
            content_extractor_wide_checkpoint, strict=False
        )

        # style encoder
        style_encoder_checkpoint_path = load_custom_model_from_hf(DEFAULT_SE_REPO_ID, DEFAULT_SE_CHECKPOINT, config_filename=None)
        style_encoder_checkpoint = torch.load(style_encoder_checkpoint_path, map_location="cpu")
        self.style_encoder.load_state_dict(style_encoder_checkpoint, strict=False)

    def setup_ar_caches(self, max_batch_size=1, max_seq_len=4096, dtype=torch.float32, device=torch.device("cpu")):
        self.ar.setup_caches(max_batch_size=max_batch_size, max_seq_len=max_seq_len, dtype=dtype, device=device)

    def compute_style(self, waves_16k: torch.Tensor):
        feat = torchaudio.compliance.kaldi.fbank(waves_16k,
                                                  num_mel_bins=80,
                                                  dither=0,
                                                  sample_frequency=16000)
        feat = feat - feat.mean(dim=0, keepdim=True)
        style = self.style_encoder(feat.unsqueeze(0))
        return style

    @torch.no_grad()
    @torch.inference_mode()
    def convert_timbre(
            self,
            source_audio_path: str,
            target_audio_path: str,
            diffusion_steps: int = 30,
            length_adjust: float = 1.0,
            inference_cfg_rate: float = 0.5,
            use_sway_sampling: bool = False,
            use_amo_sampling: bool = False,
            device: torch.device = torch.device("cpu"),
            dtype: torch.dtype = torch.float32,
    ):
        source_wave = librosa.load(source_audio_path, sr=self.sr)[0]
        target_wave = librosa.load(target_audio_path, sr=self.sr)[0]
        source_wave_tensor = torch.tensor(source_wave).unsqueeze(0).to(device)
        target_wave_tensor = torch.tensor(target_wave).unsqueeze(0).to(device)

        # get 16khz audio
        source_wave_16k = librosa.resample(source_wave, orig_sr=self.sr, target_sr=16000)
        target_wave_16k = librosa.resample(target_wave, orig_sr=self.sr, target_sr=16000)
        source_wave_16k_tensor = torch.tensor(source_wave_16k).unsqueeze(0).to(device)
        target_wave_16k_tensor = torch.tensor(target_wave_16k).unsqueeze(0).to(device)

        # compute mel spectrogram
        source_mel = self.mel_fn(source_wave_tensor)
        target_mel = self.mel_fn(target_wave_tensor)
        source_mel_len = source_mel.size(2)
        target_mel_len = target_mel.size(2)

        with torch.autocast(device_type=device.type, dtype=dtype):
            # compute content features
            _, source_content_indices, _ = self.content_extractor_wide(source_wave_16k_tensor, [source_wave_16k.size])
            _, target_content_indices, _ = self.content_extractor_wide(target_wave_16k_tensor, [target_wave_16k.size])

            # compute style features
            target_style = self.compute_style(target_wave_16k_tensor)

            # Length regulation
            cond, _ = self.cfm_length_regulator(source_content_indices, ylens=torch.LongTensor([source_mel_len]).to(device))
            prompt_condition, _, = self.cfm_length_regulator(target_content_indices, ylens=torch.LongTensor([target_mel_len]).to(device))

            cat_condition = torch.cat([prompt_condition, cond], dim=1)
            # generate mel spectrogram
            vc_mel = self.cfm.inference(
                cat_condition,
                torch.LongTensor([cat_condition.size(1)]).to(device),
                target_mel, target_style, diffusion_steps,
                inference_cfg_rate=inference_cfg_rate,
                sway_sampling=use_sway_sampling,
                amo_sampling=use_amo_sampling,
            )
        vc_mel = vc_mel[:, :, target_mel_len:]
        vc_wave = self.vocoder(vc_mel.float()).squeeze()[None]
        return vc_wave.cpu().numpy()

    @torch.no_grad()
    @torch.inference_mode()
    def convert_voice(
            self,
            source_audio_path: str,
            target_audio_path: str,
            diffusion_steps: int = 30,
            length_adjust: float = 1.0,
            inference_cfg_rate: float = 0.5,
            top_p: float = 0.7,
            temperature: float = 0.7,
            repetition_penalty: float = 1.5,
            use_sway_sampling: bool = False,
            use_amo_sampling: bool = False,
            device: torch.device = torch.device("cpu"),
            dtype: torch.dtype = torch.float32,
    ):
        source_wave = librosa.load(source_audio_path, sr=self.sr)[0]
        target_wave = librosa.load(target_audio_path, sr=self.sr)[0]
        source_wave_tensor = torch.tensor(source_wave).unsqueeze(0).to(device)
        target_wave_tensor = torch.tensor(target_wave).unsqueeze(0).to(device)

        # get 16khz audio
        source_wave_16k = librosa.resample(source_wave, orig_sr=self.sr, target_sr=16000)
        target_wave_16k = librosa.resample(target_wave, orig_sr=self.sr, target_sr=16000)
        source_wave_16k_tensor = torch.tensor(source_wave_16k).unsqueeze(0).to(device)
        target_wave_16k_tensor = torch.tensor(target_wave_16k).unsqueeze(0).to(device)

        # compute mel spectrogram
        source_mel = self.mel_fn(source_wave_tensor)
        target_mel = self.mel_fn(target_wave_tensor)
        source_mel_len = source_mel.size(2)
        target_mel_len = target_mel.size(2)

        with torch.autocast(device_type=device.type, dtype=dtype):
            # compute content features
            _, source_content_indices, _ = self.content_extractor_wide(source_wave_16k_tensor, [source_wave_16k.size])
            _, target_content_indices, _ = self.content_extractor_wide(target_wave_16k_tensor, [target_wave_16k.size])

            _, source_narrow_indices, _ = self.content_extractor_narrow(source_wave_16k_tensor,
                                                                         [source_wave_16k.size], ssl_model=self.content_extractor_wide.ssl_model)
            _, target_narrow_indices, _ = self.content_extractor_narrow(target_wave_16k_tensor,
                                                                         [target_wave_16k.size], ssl_model=self.content_extractor_wide.ssl_model)

            src_narrow_reduced, src_narrow_len = self.duration_reduction_func(source_narrow_indices[0], 1)
            tgt_narrow_reduced, tgt_narrow_len = self.duration_reduction_func(target_narrow_indices[0], 1)

            ar_cond = self.ar_length_regulator(torch.cat([tgt_narrow_reduced, src_narrow_reduced], dim=0)[None])[0]

            ar_out = self.ar.generate(ar_cond, target_content_indices, top_p=top_p, temperature=temperature, repetition_penalty=repetition_penalty)
            ar_out_mel_len = torch.LongTensor([int(source_mel_len / source_content_indices.size(-1) * ar_out.size(-1) * length_adjust)]).to(device)
            # compute style features
            target_style = self.compute_style(target_wave_16k_tensor)

            # Length regulation
            cond, _ = self.cfm_length_regulator(ar_out, ylens=torch.LongTensor([ar_out_mel_len]).to(device))
            prompt_condition, _, = self.cfm_length_regulator(target_content_indices, ylens=torch.LongTensor([target_mel_len]).to(device))

            cat_condition = torch.cat([prompt_condition, cond], dim=1)
            # generate mel spectrogram
            vc_mel = self.cfm.inference(
                cat_condition,
                torch.LongTensor([cat_condition.size(1)]).to(device),
                target_mel, target_style, diffusion_steps,
                inference_cfg_rate=inference_cfg_rate,
                sway_sampling=use_sway_sampling,
                amo_sampling=use_amo_sampling,
            )
        vc_mel = vc_mel[:, :, target_mel_len:]
        vc_wave = self.vocoder(vc_mel.float()).squeeze()[None]
        return vc_wave.cpu().numpy()

    def _process_content_features(self, audio_16k_tensor, is_narrow=False):
        """Process audio through Whisper model to extract features."""
        content_extractor_fn = self.content_extractor_narrow if is_narrow else self.content_extractor_wide
        if audio_16k_tensor.size(-1) <= 16000 * 30:
            # Compute content features
            _, content_indices, _ = content_extractor_fn(audio_16k_tensor, [audio_16k_tensor.size(-1)], ssl_model=self.content_extractor_wide.ssl_model)
        else:
            # Process long audio in chunks
            overlapping_time = 5  # 5 seconds
            features_list = []
            buffer = None
            traversed_time = 0
            while traversed_time < audio_16k_tensor.size(-1):
                if buffer is None:  # first chunk
                    chunk = audio_16k_tensor[:, traversed_time:traversed_time + 16000 * 30]
                else:
                    chunk = torch.cat([
                        buffer,
                        audio_16k_tensor[:, traversed_time:traversed_time + 16000 * (30 - overlapping_time)]
                    ], dim=-1)
                _, chunk_content_indices, _ = content_extractor_fn(chunk, [chunk.size(-1)], ssl_model=self.content_extractor_wide.ssl_model)
                if traversed_time == 0:
                    features_list.append(chunk_content_indices)
                else:
                    features_list.append(chunk_content_indices[:, 50 * overlapping_time:])
                buffer = chunk[:, -16000 * overlapping_time:]
                traversed_time += 30 * 16000 if traversed_time == 0 else chunk.size(-1) - 16000 * overlapping_time
            content_indices = torch.cat(features_list, dim=1)

        return content_indices

    @spaces.GPU
    @torch.no_grad()
    @torch.inference_mode()
    def convert_voice_with_streaming(
            self,
            source_audio_path: str,
            target_audio_path: str,
            diffusion_steps: int = 30,
            length_adjust: float = 1.0,
            intelligebility_cfg_rate: float = 0.7,
            similarity_cfg_rate: float = 0.7,
            top_p: float = 0.7,
            temperature: float = 0.7,
            repetition_penalty: float = 1.5,
            convert_style: bool = False,
            anonymization_only: bool = False,
            device: torch.device = torch.device("cuda"),
            dtype: torch.dtype = torch.float16,
            stream_output: bool = True,
    ):
        """
        Convert voice with streaming support for long audio files.
        
        Args:
            source_audio_path: Path to source audio file
            target_audio_path: Path to target audio file
            diffusion_steps: Number of diffusion steps (default: 30)
            length_adjust: Length adjustment factor (default: 1.0)
            intelligebility_cfg_rate: CFG rate for intelligibility (default: 0.7)
            similarity_cfg_rate: CFG rate for similarity (default: 0.7)
            top_p: Top-p sampling parameter (default: 0.7)
            temperature: Temperature for sampling (default: 0.7)
            repetition_penalty: Repetition penalty (default: 1.5)
            device: Device to use (default: cpu)
            dtype: Data type to use (default: float32)
            stream_output: Whether to stream the output (default: True)
            
        Returns:
            If stream_output is True, yields (mp3_bytes, full_audio) tuples
            If stream_output is False, returns the full audio as a numpy array
        """
        # Load audio
        source_wave = librosa.load(source_audio_path, sr=self.sr)[0]
        target_wave = librosa.load(target_audio_path, sr=self.sr)[0]
        
        # Limit target audio to 25 seconds
        target_wave = target_wave[:self.sr * (self.dit_max_context_len - 5)]
        
        source_wave_tensor = torch.tensor(source_wave).unsqueeze(0).float().to(device)
        target_wave_tensor = torch.tensor(target_wave).unsqueeze(0).float().to(device)

        # Resample to 16kHz for feature extraction
        source_wave_16k = librosa.resample(source_wave, orig_sr=self.sr, target_sr=16000)
        target_wave_16k = librosa.resample(target_wave, orig_sr=self.sr, target_sr=16000)
        source_wave_16k_tensor = torch.tensor(source_wave_16k).unsqueeze(0).to(device)
        target_wave_16k_tensor = torch.tensor(target_wave_16k).unsqueeze(0).to(device)

        # Compute mel spectrograms
        source_mel = self.mel_fn(source_wave_tensor)
        target_mel = self.mel_fn(target_wave_tensor)
        source_mel_len = source_mel.size(2)
        target_mel_len = target_mel.size(2)
        
        # Set up chunk processing parameters
        max_context_window = self.sr // self.hop_size * self.dit_max_context_len
        overlap_wave_len = self.overlap_frame_len * self.hop_size
        
        with torch.autocast(device_type=device.type, dtype=dtype):
            # Compute content features
            source_content_indices = self._process_content_features(source_wave_16k_tensor, is_narrow=False)
            target_content_indices = self._process_content_features(target_wave_16k_tensor, is_narrow=False)
            # Compute style features
            target_style = self.compute_style(target_wave_16k_tensor)
            prompt_condition, _, = self.cfm_length_regulator(target_content_indices,
                                                             ylens=torch.LongTensor([target_mel_len]).to(device))

        # prepare for streaming
        generated_wave_chunks = []
        processed_frames = 0
        previous_chunk = None
        if convert_style:
            with torch.autocast(device_type=device.type, dtype=dtype):
                source_narrow_indices = self._process_content_features(source_wave_16k_tensor, is_narrow=True)
                target_narrow_indices = self._process_content_features(target_wave_16k_tensor, is_narrow=True)
            src_narrow_reduced, src_narrow_len = self.duration_reduction_func(source_narrow_indices[0], 1)
            tgt_narrow_reduced, tgt_narrow_len = self.duration_reduction_func(target_narrow_indices[0], 1)
            # Process src_narrow_reduced in chunks of max 1000 tokens
            max_chunk_size = self.ar_max_content_len - tgt_narrow_len

            # Process src_narrow_reduced in chunks
            for i in range(0, len(src_narrow_reduced), max_chunk_size):
                is_last_chunk = i + max_chunk_size >= len(src_narrow_reduced)
                with torch.autocast(device_type=device.type, dtype=dtype):
                    chunk = src_narrow_reduced[i:i + max_chunk_size]
                    if anonymization_only:
                        chunk_ar_cond = self.ar_length_regulator(chunk[None])[0]
                        chunk_ar_out = self.ar.generate(chunk_ar_cond, torch.zeros([1, 0]).long().to(device),
                                                        compiled_decode_fn=self.compiled_decode_fn,
                                                      top_p=top_p, temperature=temperature,
                                                      repetition_penalty=repetition_penalty)
                    else:
                        # For each chunk, we need to include tgt_narrow_reduced as context
                        chunk_ar_cond = self.ar_length_regulator(torch.cat([tgt_narrow_reduced, chunk], dim=0)[None])[0]
                        chunk_ar_out = self.ar.generate(chunk_ar_cond, target_content_indices, compiled_decode_fn=self.compiled_decode_fn,
                                                      top_p=top_p, temperature=temperature,
                                                      repetition_penalty=repetition_penalty)
                    chunkar_out_mel_len = torch.LongTensor([int(source_mel_len / source_content_indices.size(
                        -1) * chunk_ar_out.size(-1) * length_adjust)]).to(device)
                    # Length regulation
                    chunk_cond, _ = self.cfm_length_regulator(chunk_ar_out, ylens=torch.LongTensor([chunkar_out_mel_len]).to(device))
                    cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1)
                    original_len = cat_condition.size(1)
                    # pad cat_condition to compile_len
                    if self.dit_compiled:
                        cat_condition = torch.nn.functional.pad(cat_condition,
                                                                (0, 0, 0, self.compile_len - cat_condition.size(1),),
                                                                value=0)
                    # Voice Conversion
                    vc_mel = self.cfm.inference(
                        cat_condition,
                        torch.LongTensor([original_len]).to(device),
                        target_mel, target_style, diffusion_steps,
                        inference_cfg_rate=[intelligebility_cfg_rate, similarity_cfg_rate],
                        random_voice=anonymization_only,
                    )
                    vc_mel = vc_mel[:, :, target_mel_len:original_len]
                vc_wave = self.vocoder(vc_mel).squeeze()[None]
                processed_frames, previous_chunk, should_break, mp3_bytes, full_audio = self._stream_wave_chunks(
                    vc_wave, processed_frames, vc_mel, overlap_wave_len,
                    generated_wave_chunks, previous_chunk, is_last_chunk, stream_output
                )

                if stream_output and mp3_bytes is not None:
                    yield mp3_bytes, full_audio

                if should_break:
                    if not stream_output:
                        return full_audio
                    break
        else:
            cond, _ = self.cfm_length_regulator(source_content_indices, ylens=torch.LongTensor([source_mel_len]).to(device))

            # Process in chunks for streaming
            max_source_window = max_context_window - target_mel.size(2)

            # Generate chunk by chunk and stream the output
            while processed_frames < cond.size(1):
                chunk_cond = cond[:, processed_frames:processed_frames + max_source_window]
                is_last_chunk = processed_frames + max_source_window >= cond.size(1)
                cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1)
                original_len = cat_condition.size(1)
                # pad cat_condition to compile_len
                if self.dit_compiled:
                    cat_condition = torch.nn.functional.pad(cat_condition,
                                                            (0, 0, 0, self.compile_len - cat_condition.size(1),), value=0)
                with torch.autocast(device_type=device.type, dtype=dtype):
                    # Voice Conversion
                    vc_mel = self.cfm.inference(
                        cat_condition,
                        torch.LongTensor([original_len]).to(device),
                        target_mel, target_style, diffusion_steps,
                        inference_cfg_rate=[intelligebility_cfg_rate, similarity_cfg_rate],
                        random_voice=anonymization_only,
                    )
                vc_mel = vc_mel[:, :, target_mel_len:original_len]
                vc_wave = self.vocoder(vc_mel).squeeze()[None]

                processed_frames, previous_chunk, should_break, mp3_bytes, full_audio = self._stream_wave_chunks(
                    vc_wave, processed_frames, vc_mel, overlap_wave_len,
                    generated_wave_chunks, previous_chunk, is_last_chunk, stream_output
                )
                
                if stream_output and mp3_bytes is not None:
                    yield mp3_bytes, full_audio
                    
                if should_break:
                    if not stream_output:
                        return full_audio
                    break