Spaces:
Running
on
Zero
Running
on
Zero
File size: 30,450 Bytes
84a7891 5e78e49 84a7891 5e78e49 84a7891 5e78e49 84a7891 5e78e49 84a7891 5e78e49 84a7891 5e78e49 84a7891 5e78e49 84a7891 5e78e49 84a7891 5e78e49 84a7891 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 |
import spaces
import torch
import librosa
import torchaudio
import numpy as np
from pydub import AudioSegment
from hf_utils import load_custom_model_from_hf
DEFAULT_REPO_ID = "Plachta/Seed-VC"
DEFAULT_CFM_CHECKPOINT = "v2/cfm_small.pth"
DEFAULT_AR_CHECKPOINT = "v2/ar_base.pth"
DEFAULT_CE_REPO_ID = "Plachta/ASTRAL-quantization"
DEFAULT_CE_NARROW_CHECKPOINT = "bsq32/bsq32_light.pth"
DEFAULT_CE_WIDE_CHECKPOINT = "bsq2048/bsq2048_light.pth"
DEFAULT_SE_REPO_ID = "funasr/campplus"
DEFAULT_SE_CHECKPOINT = "campplus_cn_common.bin"
class VoiceConversionWrapper(torch.nn.Module):
def __init__(
self,
sr: int,
hop_size: int,
mel_fn: callable,
cfm: torch.nn.Module,
cfm_length_regulator: torch.nn.Module,
content_extractor_narrow: torch.nn.Module,
content_extractor_wide: torch.nn.Module,
ar_length_regulator: torch.nn.Module,
ar: torch.nn.Module,
style_encoder: torch.nn.Module,
vocoder: torch.nn.Module,
):
super(VoiceConversionWrapper, self).__init__()
self.sr = sr
self.hop_size = hop_size
self.mel_fn = mel_fn
self.cfm = cfm
self.cfm_length_regulator = cfm_length_regulator
self.content_extractor_narrow = content_extractor_narrow
self.content_extractor_wide = content_extractor_wide
self.vocoder = vocoder
self.ar_length_regulator = ar_length_regulator
self.ar = ar
self.style_encoder = style_encoder
# Set streaming parameters
self.overlap_frame_len = 16
self.bitrate = "320k"
self.compiled_decode_fn = None
self.dit_compiled = False
self.dit_max_context_len = 30 # in seconds
self.ar_max_content_len = 1500 # in num of narrow tokens
self.compile_len = 87 * self.dit_max_context_len
def compile_ar(self):
"""
Compile the AR model for inference.
"""
self.compiled_decode_fn = torch.compile(
self.ar.model.forward_generate,
fullgraph=True,
backend="inductor" if torch.cuda.is_available() else "aot_eager",
mode="reduce-overhead" if torch.cuda.is_available() else None,
)
def compile_cfm(self):
self.cfm.estimator.transformer = torch.compile(
self.cfm.estimator.transformer,
fullgraph=True,
backend="inductor" if torch.cuda.is_available() else "aot_eager",
mode="reduce-overhead" if torch.cuda.is_available() else None,
)
self.dit_compiled = True
@staticmethod
def strip_prefix(state_dict: dict, prefix: str = "module.") -> dict:
"""
Strip the prefix from the state_dict keys.
"""
new_state_dict = {}
for k, v in state_dict.items():
if k.startswith(prefix):
new_key = k[len(prefix):]
else:
new_key = k
new_state_dict[new_key] = v
return new_state_dict
@staticmethod
def duration_reduction_func(token_seq, n_gram=1):
"""
Args:
token_seq: (T,)
Returns:
reduced_token_seq: (T')
reduced_token_seq_len: T'
"""
n_gram_seq = token_seq.unfold(0, n_gram, 1)
mask = torch.all(n_gram_seq[1:] != n_gram_seq[:-1], dim=1)
reduced_token_seq = torch.cat(
(n_gram_seq[0, :n_gram], n_gram_seq[1:, -1][mask])
)
return reduced_token_seq, len(reduced_token_seq)
@staticmethod
def crossfade(chunk1, chunk2, overlap):
"""Apply crossfade between two audio chunks."""
fade_out = np.cos(np.linspace(0, np.pi / 2, overlap)) ** 2
fade_in = np.cos(np.linspace(np.pi / 2, 0, overlap)) ** 2
if len(chunk2) < overlap:
chunk2[:overlap] = chunk2[:overlap] * fade_in[:len(chunk2)] + (chunk1[-overlap:] * fade_out)[:len(chunk2)]
else:
chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out
return chunk2
def _stream_wave_chunks(self, vc_wave, processed_frames, vc_mel, overlap_wave_len,
generated_wave_chunks, previous_chunk, is_last_chunk, stream_output):
"""
Helper method to handle streaming wave chunks.
Args:
vc_wave: The current wave chunk
processed_frames: Number of frames processed so far
vc_mel: The mel spectrogram
overlap_wave_len: Length of overlap between chunks
generated_wave_chunks: List of generated wave chunks
previous_chunk: Previous wave chunk for crossfading
is_last_chunk: Whether this is the last chunk
stream_output: Whether to stream the output
Returns:
Tuple of (processed_frames, previous_chunk, should_break, mp3_bytes, full_audio)
where should_break indicates if processing should stop
mp3_bytes is the MP3 bytes if streaming, None otherwise
full_audio is the full audio if this is the last chunk, None otherwise
"""
mp3_bytes = None
full_audio = None
if processed_frames == 0:
if is_last_chunk:
output_wave = vc_wave[0].cpu().numpy()
generated_wave_chunks.append(output_wave)
if stream_output:
output_wave_int16 = (output_wave * 32768.0).astype(np.int16)
mp3_bytes = AudioSegment(
output_wave_int16.tobytes(), frame_rate=self.sr,
sample_width=output_wave_int16.dtype.itemsize, channels=1
).export(format="mp3", bitrate=self.bitrate).read()
full_audio = (self.sr, np.concatenate(generated_wave_chunks))
else:
return processed_frames, previous_chunk, True, None, np.concatenate(generated_wave_chunks)
return processed_frames, previous_chunk, True, mp3_bytes, full_audio
output_wave = vc_wave[0, :-overlap_wave_len].cpu().numpy()
generated_wave_chunks.append(output_wave)
previous_chunk = vc_wave[0, -overlap_wave_len:]
processed_frames += vc_mel.size(2) - self.overlap_frame_len
if stream_output:
output_wave_int16 = (output_wave * 32768.0).astype(np.int16)
mp3_bytes = AudioSegment(
output_wave_int16.tobytes(), frame_rate=self.sr,
sample_width=output_wave_int16.dtype.itemsize, channels=1
).export(format="mp3", bitrate=self.bitrate).read()
elif is_last_chunk:
output_wave = self.crossfade(previous_chunk.cpu().numpy(), vc_wave[0].cpu().numpy(), overlap_wave_len)
generated_wave_chunks.append(output_wave)
processed_frames += vc_mel.size(2) - self.overlap_frame_len
if stream_output:
output_wave_int16 = (output_wave * 32768.0).astype(np.int16)
mp3_bytes = AudioSegment(
output_wave_int16.tobytes(), frame_rate=self.sr,
sample_width=output_wave_int16.dtype.itemsize, channels=1
).export(format="mp3", bitrate=self.bitrate).read()
full_audio = (self.sr, np.concatenate(generated_wave_chunks))
else:
return processed_frames, previous_chunk, True, None, np.concatenate(generated_wave_chunks)
return processed_frames, previous_chunk, True, mp3_bytes, full_audio
else:
output_wave = self.crossfade(previous_chunk.cpu().numpy(), vc_wave[0, :-overlap_wave_len].cpu().numpy(), overlap_wave_len)
generated_wave_chunks.append(output_wave)
previous_chunk = vc_wave[0, -overlap_wave_len:]
processed_frames += vc_mel.size(2) - self.overlap_frame_len
if stream_output:
output_wave_int16 = (output_wave * 32768.0).astype(np.int16)
mp3_bytes = AudioSegment(
output_wave_int16.tobytes(), frame_rate=self.sr,
sample_width=output_wave_int16.dtype.itemsize, channels=1
).export(format="mp3", bitrate=self.bitrate).read()
return processed_frames, previous_chunk, False, mp3_bytes, full_audio
def load_checkpoints(
self,
cfm_checkpoint_path = None,
ar_checkpoint_path = None,
):
if cfm_checkpoint_path is None:
cfm_checkpoint_path = load_custom_model_from_hf(
repo_id=DEFAULT_REPO_ID,
model_filename=DEFAULT_CFM_CHECKPOINT,
)
if ar_checkpoint_path is None:
ar_checkpoint_path = load_custom_model_from_hf(
repo_id=DEFAULT_REPO_ID,
model_filename=DEFAULT_AR_CHECKPOINT,
)
# cfm
cfm_checkpoint = torch.load(cfm_checkpoint_path, map_location="cpu")
cfm_length_regulator_state_dict = self.strip_prefix(cfm_checkpoint["net"]['length_regulator'], "module.")
cfm_state_dict = self.strip_prefix(cfm_checkpoint["net"]['cfm'], "module.")
self.cfm.load_state_dict(cfm_state_dict, strict=False)
self.cfm_length_regulator.load_state_dict(cfm_length_regulator_state_dict, strict=False)
# ar
ar_checkpoint = torch.load(ar_checkpoint_path, map_location="cpu")
ar_length_regulator_state_dict = self.strip_prefix(ar_checkpoint["net"]['length_regulator'], "module.")
ar_state_dict = self.strip_prefix(ar_checkpoint["net"]['ar'], "module.")
self.ar.load_state_dict(ar_state_dict, strict=False)
self.ar_length_regulator.load_state_dict(ar_length_regulator_state_dict, strict=False)
# content extractor
content_extractor_narrow_checkpoint_path = load_custom_model_from_hf(
repo_id=DEFAULT_CE_REPO_ID,
model_filename=DEFAULT_CE_NARROW_CHECKPOINT,
)
content_extractor_narrow_checkpoint = torch.load(content_extractor_narrow_checkpoint_path, map_location="cpu")
self.content_extractor_narrow.load_state_dict(
content_extractor_narrow_checkpoint, strict=False
)
content_extractor_wide_checkpoint_path = load_custom_model_from_hf(
repo_id=DEFAULT_CE_REPO_ID,
model_filename=DEFAULT_CE_WIDE_CHECKPOINT,
)
content_extractor_wide_checkpoint = torch.load(content_extractor_wide_checkpoint_path, map_location="cpu")
self.content_extractor_wide.load_state_dict(
content_extractor_wide_checkpoint, strict=False
)
# style encoder
style_encoder_checkpoint_path = load_custom_model_from_hf(DEFAULT_SE_REPO_ID, DEFAULT_SE_CHECKPOINT, config_filename=None)
style_encoder_checkpoint = torch.load(style_encoder_checkpoint_path, map_location="cpu")
self.style_encoder.load_state_dict(style_encoder_checkpoint, strict=False)
def setup_ar_caches(self, max_batch_size=1, max_seq_len=4096, dtype=torch.float32, device=torch.device("cpu")):
self.ar.setup_caches(max_batch_size=max_batch_size, max_seq_len=max_seq_len, dtype=dtype, device=device)
def compute_style(self, waves_16k: torch.Tensor):
feat = torchaudio.compliance.kaldi.fbank(waves_16k,
num_mel_bins=80,
dither=0,
sample_frequency=16000)
feat = feat - feat.mean(dim=0, keepdim=True)
style = self.style_encoder(feat.unsqueeze(0))
return style
@torch.no_grad()
@torch.inference_mode()
def convert_timbre(
self,
source_audio_path: str,
target_audio_path: str,
diffusion_steps: int = 30,
length_adjust: float = 1.0,
inference_cfg_rate: float = 0.5,
use_sway_sampling: bool = False,
use_amo_sampling: bool = False,
device: torch.device = torch.device("cpu"),
dtype: torch.dtype = torch.float32,
):
source_wave = librosa.load(source_audio_path, sr=self.sr)[0]
target_wave = librosa.load(target_audio_path, sr=self.sr)[0]
source_wave_tensor = torch.tensor(source_wave).unsqueeze(0).to(device)
target_wave_tensor = torch.tensor(target_wave).unsqueeze(0).to(device)
# get 16khz audio
source_wave_16k = librosa.resample(source_wave, orig_sr=self.sr, target_sr=16000)
target_wave_16k = librosa.resample(target_wave, orig_sr=self.sr, target_sr=16000)
source_wave_16k_tensor = torch.tensor(source_wave_16k).unsqueeze(0).to(device)
target_wave_16k_tensor = torch.tensor(target_wave_16k).unsqueeze(0).to(device)
# compute mel spectrogram
source_mel = self.mel_fn(source_wave_tensor)
target_mel = self.mel_fn(target_wave_tensor)
source_mel_len = source_mel.size(2)
target_mel_len = target_mel.size(2)
with torch.autocast(device_type=device.type, dtype=dtype):
# compute content features
_, source_content_indices, _ = self.content_extractor_wide(source_wave_16k_tensor, [source_wave_16k.size])
_, target_content_indices, _ = self.content_extractor_wide(target_wave_16k_tensor, [target_wave_16k.size])
# compute style features
target_style = self.compute_style(target_wave_16k_tensor)
# Length regulation
cond, _ = self.cfm_length_regulator(source_content_indices, ylens=torch.LongTensor([source_mel_len]).to(device))
prompt_condition, _, = self.cfm_length_regulator(target_content_indices, ylens=torch.LongTensor([target_mel_len]).to(device))
cat_condition = torch.cat([prompt_condition, cond], dim=1)
# generate mel spectrogram
vc_mel = self.cfm.inference(
cat_condition,
torch.LongTensor([cat_condition.size(1)]).to(device),
target_mel, target_style, diffusion_steps,
inference_cfg_rate=inference_cfg_rate,
sway_sampling=use_sway_sampling,
amo_sampling=use_amo_sampling,
)
vc_mel = vc_mel[:, :, target_mel_len:]
vc_wave = self.vocoder(vc_mel.float()).squeeze()[None]
return vc_wave.cpu().numpy()
@torch.no_grad()
@torch.inference_mode()
def convert_voice(
self,
source_audio_path: str,
target_audio_path: str,
diffusion_steps: int = 30,
length_adjust: float = 1.0,
inference_cfg_rate: float = 0.5,
top_p: float = 0.7,
temperature: float = 0.7,
repetition_penalty: float = 1.5,
use_sway_sampling: bool = False,
use_amo_sampling: bool = False,
device: torch.device = torch.device("cpu"),
dtype: torch.dtype = torch.float32,
):
source_wave = librosa.load(source_audio_path, sr=self.sr)[0]
target_wave = librosa.load(target_audio_path, sr=self.sr)[0]
source_wave_tensor = torch.tensor(source_wave).unsqueeze(0).to(device)
target_wave_tensor = torch.tensor(target_wave).unsqueeze(0).to(device)
# get 16khz audio
source_wave_16k = librosa.resample(source_wave, orig_sr=self.sr, target_sr=16000)
target_wave_16k = librosa.resample(target_wave, orig_sr=self.sr, target_sr=16000)
source_wave_16k_tensor = torch.tensor(source_wave_16k).unsqueeze(0).to(device)
target_wave_16k_tensor = torch.tensor(target_wave_16k).unsqueeze(0).to(device)
# compute mel spectrogram
source_mel = self.mel_fn(source_wave_tensor)
target_mel = self.mel_fn(target_wave_tensor)
source_mel_len = source_mel.size(2)
target_mel_len = target_mel.size(2)
with torch.autocast(device_type=device.type, dtype=dtype):
# compute content features
_, source_content_indices, _ = self.content_extractor_wide(source_wave_16k_tensor, [source_wave_16k.size])
_, target_content_indices, _ = self.content_extractor_wide(target_wave_16k_tensor, [target_wave_16k.size])
_, source_narrow_indices, _ = self.content_extractor_narrow(source_wave_16k_tensor,
[source_wave_16k.size], ssl_model=self.content_extractor_wide.ssl_model)
_, target_narrow_indices, _ = self.content_extractor_narrow(target_wave_16k_tensor,
[target_wave_16k.size], ssl_model=self.content_extractor_wide.ssl_model)
src_narrow_reduced, src_narrow_len = self.duration_reduction_func(source_narrow_indices[0], 1)
tgt_narrow_reduced, tgt_narrow_len = self.duration_reduction_func(target_narrow_indices[0], 1)
ar_cond = self.ar_length_regulator(torch.cat([tgt_narrow_reduced, src_narrow_reduced], dim=0)[None])[0]
ar_out = self.ar.generate(ar_cond, target_content_indices, top_p=top_p, temperature=temperature, repetition_penalty=repetition_penalty)
ar_out_mel_len = torch.LongTensor([int(source_mel_len / source_content_indices.size(-1) * ar_out.size(-1) * length_adjust)]).to(device)
# compute style features
target_style = self.compute_style(target_wave_16k_tensor)
# Length regulation
cond, _ = self.cfm_length_regulator(ar_out, ylens=torch.LongTensor([ar_out_mel_len]).to(device))
prompt_condition, _, = self.cfm_length_regulator(target_content_indices, ylens=torch.LongTensor([target_mel_len]).to(device))
cat_condition = torch.cat([prompt_condition, cond], dim=1)
# generate mel spectrogram
vc_mel = self.cfm.inference(
cat_condition,
torch.LongTensor([cat_condition.size(1)]).to(device),
target_mel, target_style, diffusion_steps,
inference_cfg_rate=inference_cfg_rate,
sway_sampling=use_sway_sampling,
amo_sampling=use_amo_sampling,
)
vc_mel = vc_mel[:, :, target_mel_len:]
vc_wave = self.vocoder(vc_mel.float()).squeeze()[None]
return vc_wave.cpu().numpy()
def _process_content_features(self, audio_16k_tensor, is_narrow=False):
"""Process audio through Whisper model to extract features."""
content_extractor_fn = self.content_extractor_narrow if is_narrow else self.content_extractor_wide
if audio_16k_tensor.size(-1) <= 16000 * 30:
# Compute content features
_, content_indices, _ = content_extractor_fn(audio_16k_tensor, [audio_16k_tensor.size(-1)], ssl_model=self.content_extractor_wide.ssl_model)
else:
# Process long audio in chunks
overlapping_time = 5 # 5 seconds
features_list = []
buffer = None
traversed_time = 0
while traversed_time < audio_16k_tensor.size(-1):
if buffer is None: # first chunk
chunk = audio_16k_tensor[:, traversed_time:traversed_time + 16000 * 30]
else:
chunk = torch.cat([
buffer,
audio_16k_tensor[:, traversed_time:traversed_time + 16000 * (30 - overlapping_time)]
], dim=-1)
_, chunk_content_indices, _ = content_extractor_fn(chunk, [chunk.size(-1)], ssl_model=self.content_extractor_wide.ssl_model)
if traversed_time == 0:
features_list.append(chunk_content_indices)
else:
features_list.append(chunk_content_indices[:, 50 * overlapping_time:])
buffer = chunk[:, -16000 * overlapping_time:]
traversed_time += 30 * 16000 if traversed_time == 0 else chunk.size(-1) - 16000 * overlapping_time
content_indices = torch.cat(features_list, dim=1)
return content_indices
@spaces.GPU
@torch.no_grad()
@torch.inference_mode()
def convert_voice_with_streaming(
self,
source_audio_path: str,
target_audio_path: str,
diffusion_steps: int = 30,
length_adjust: float = 1.0,
intelligebility_cfg_rate: float = 0.7,
similarity_cfg_rate: float = 0.7,
top_p: float = 0.7,
temperature: float = 0.7,
repetition_penalty: float = 1.5,
convert_style: bool = False,
anonymization_only: bool = False,
device: torch.device = torch.device("cuda"),
dtype: torch.dtype = torch.float16,
stream_output: bool = True,
):
"""
Convert voice with streaming support for long audio files.
Args:
source_audio_path: Path to source audio file
target_audio_path: Path to target audio file
diffusion_steps: Number of diffusion steps (default: 30)
length_adjust: Length adjustment factor (default: 1.0)
intelligebility_cfg_rate: CFG rate for intelligibility (default: 0.7)
similarity_cfg_rate: CFG rate for similarity (default: 0.7)
top_p: Top-p sampling parameter (default: 0.7)
temperature: Temperature for sampling (default: 0.7)
repetition_penalty: Repetition penalty (default: 1.5)
device: Device to use (default: cpu)
dtype: Data type to use (default: float32)
stream_output: Whether to stream the output (default: True)
Returns:
If stream_output is True, yields (mp3_bytes, full_audio) tuples
If stream_output is False, returns the full audio as a numpy array
"""
# Load audio
source_wave = librosa.load(source_audio_path, sr=self.sr)[0]
target_wave = librosa.load(target_audio_path, sr=self.sr)[0]
# Limit target audio to 25 seconds
target_wave = target_wave[:self.sr * (self.dit_max_context_len - 5)]
source_wave_tensor = torch.tensor(source_wave).unsqueeze(0).float().to(device)
target_wave_tensor = torch.tensor(target_wave).unsqueeze(0).float().to(device)
# Resample to 16kHz for feature extraction
source_wave_16k = librosa.resample(source_wave, orig_sr=self.sr, target_sr=16000)
target_wave_16k = librosa.resample(target_wave, orig_sr=self.sr, target_sr=16000)
source_wave_16k_tensor = torch.tensor(source_wave_16k).unsqueeze(0).to(device)
target_wave_16k_tensor = torch.tensor(target_wave_16k).unsqueeze(0).to(device)
# Compute mel spectrograms
source_mel = self.mel_fn(source_wave_tensor)
target_mel = self.mel_fn(target_wave_tensor)
source_mel_len = source_mel.size(2)
target_mel_len = target_mel.size(2)
# Set up chunk processing parameters
max_context_window = self.sr // self.hop_size * self.dit_max_context_len
overlap_wave_len = self.overlap_frame_len * self.hop_size
with torch.autocast(device_type=device.type, dtype=dtype):
# Compute content features
source_content_indices = self._process_content_features(source_wave_16k_tensor, is_narrow=False)
target_content_indices = self._process_content_features(target_wave_16k_tensor, is_narrow=False)
# Compute style features
target_style = self.compute_style(target_wave_16k_tensor)
prompt_condition, _, = self.cfm_length_regulator(target_content_indices,
ylens=torch.LongTensor([target_mel_len]).to(device))
# prepare for streaming
generated_wave_chunks = []
processed_frames = 0
previous_chunk = None
if convert_style:
with torch.autocast(device_type=device.type, dtype=dtype):
source_narrow_indices = self._process_content_features(source_wave_16k_tensor, is_narrow=True)
target_narrow_indices = self._process_content_features(target_wave_16k_tensor, is_narrow=True)
src_narrow_reduced, src_narrow_len = self.duration_reduction_func(source_narrow_indices[0], 1)
tgt_narrow_reduced, tgt_narrow_len = self.duration_reduction_func(target_narrow_indices[0], 1)
# Process src_narrow_reduced in chunks of max 1000 tokens
max_chunk_size = self.ar_max_content_len - tgt_narrow_len
# Process src_narrow_reduced in chunks
for i in range(0, len(src_narrow_reduced), max_chunk_size):
is_last_chunk = i + max_chunk_size >= len(src_narrow_reduced)
with torch.autocast(device_type=device.type, dtype=dtype):
chunk = src_narrow_reduced[i:i + max_chunk_size]
if anonymization_only:
chunk_ar_cond = self.ar_length_regulator(chunk[None])[0]
chunk_ar_out = self.ar.generate(chunk_ar_cond, torch.zeros([1, 0]).long().to(device),
compiled_decode_fn=self.compiled_decode_fn,
top_p=top_p, temperature=temperature,
repetition_penalty=repetition_penalty)
else:
# For each chunk, we need to include tgt_narrow_reduced as context
chunk_ar_cond = self.ar_length_regulator(torch.cat([tgt_narrow_reduced, chunk], dim=0)[None])[0]
chunk_ar_out = self.ar.generate(chunk_ar_cond, target_content_indices, compiled_decode_fn=self.compiled_decode_fn,
top_p=top_p, temperature=temperature,
repetition_penalty=repetition_penalty)
chunkar_out_mel_len = torch.LongTensor([int(source_mel_len / source_content_indices.size(
-1) * chunk_ar_out.size(-1) * length_adjust)]).to(device)
# Length regulation
chunk_cond, _ = self.cfm_length_regulator(chunk_ar_out, ylens=torch.LongTensor([chunkar_out_mel_len]).to(device))
cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1)
original_len = cat_condition.size(1)
# pad cat_condition to compile_len
if self.dit_compiled:
cat_condition = torch.nn.functional.pad(cat_condition,
(0, 0, 0, self.compile_len - cat_condition.size(1),),
value=0)
# Voice Conversion
vc_mel = self.cfm.inference(
cat_condition,
torch.LongTensor([original_len]).to(device),
target_mel, target_style, diffusion_steps,
inference_cfg_rate=[intelligebility_cfg_rate, similarity_cfg_rate],
random_voice=anonymization_only,
)
vc_mel = vc_mel[:, :, target_mel_len:original_len]
vc_wave = self.vocoder(vc_mel).squeeze()[None]
processed_frames, previous_chunk, should_break, mp3_bytes, full_audio = self._stream_wave_chunks(
vc_wave, processed_frames, vc_mel, overlap_wave_len,
generated_wave_chunks, previous_chunk, is_last_chunk, stream_output
)
if stream_output and mp3_bytes is not None:
yield mp3_bytes, full_audio
if should_break:
if not stream_output:
return full_audio
break
else:
cond, _ = self.cfm_length_regulator(source_content_indices, ylens=torch.LongTensor([source_mel_len]).to(device))
# Process in chunks for streaming
max_source_window = max_context_window - target_mel.size(2)
# Generate chunk by chunk and stream the output
while processed_frames < cond.size(1):
chunk_cond = cond[:, processed_frames:processed_frames + max_source_window]
is_last_chunk = processed_frames + max_source_window >= cond.size(1)
cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1)
original_len = cat_condition.size(1)
# pad cat_condition to compile_len
if self.dit_compiled:
cat_condition = torch.nn.functional.pad(cat_condition,
(0, 0, 0, self.compile_len - cat_condition.size(1),), value=0)
with torch.autocast(device_type=device.type, dtype=dtype):
# Voice Conversion
vc_mel = self.cfm.inference(
cat_condition,
torch.LongTensor([original_len]).to(device),
target_mel, target_style, diffusion_steps,
inference_cfg_rate=[intelligebility_cfg_rate, similarity_cfg_rate],
random_voice=anonymization_only,
)
vc_mel = vc_mel[:, :, target_mel_len:original_len]
vc_wave = self.vocoder(vc_mel).squeeze()[None]
processed_frames, previous_chunk, should_break, mp3_bytes, full_audio = self._stream_wave_chunks(
vc_wave, processed_frames, vc_mel, overlap_wave_len,
generated_wave_chunks, previous_chunk, is_last_chunk, stream_output
)
if stream_output and mp3_bytes is not None:
yield mp3_bytes, full_audio
if should_break:
if not stream_output:
return full_audio
break |