File size: 8,403 Bytes
56a1295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import List


class ConvNextV2LayerNorm(nn.Module):
    r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.

    The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height,

    width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width).

    """

    def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.eps = eps
        self.data_format = data_format
        if self.data_format not in ["channels_last", "channels_first"]:
            raise NotImplementedError(f"Unsupported data format: {self.data_format}")
        self.normalized_shape = (normalized_shape,)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self.data_format == "channels_last":
            x = torch.nn.functional.layer_norm(
                x, self.normalized_shape, self.weight, self.bias, self.eps
            )
        elif self.data_format == "channels_first":
            input_dtype = x.dtype
            x = x.float()
            u = x.mean(1, keepdim=True)
            s = (x - u).pow(2).mean(1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.eps)
            x = x.to(dtype=input_dtype)
            x = self.weight[None, :, None] * x + self.bias[None, :, None]
        return x


class GRN(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.gamma = nn.Parameter(torch.zeros(1, 1, dim))
        self.beta = nn.Parameter(torch.zeros(1, 1, dim))

    def forward(self, x):
        Gx = torch.norm(x, p=2, dim=1, keepdim=True)
        Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
        return self.gamma * (x * Nx) + self.beta + x

class InterpolationLayer(nn.Module):
    def __init__(self, ):  # this is a default of 1 / 50 * (44100 / 512) / 4
        super().__init__()
        pass

    def forward(self, x: torch.Tensor, target_len: torch.Tensor, *args, **kwargs) -> torch.Tensor:
        x = F.interpolate(x, size=target_len, mode='linear')
        return x

class ConvNeXtV2Stage(nn.Module):
    def __init__(

        self,

        dim: int = 512,

        intermediate_dim: int = 2048,

        num_blocks: int = 1,

        dilation: int = 1,

        downsample_layer_indices: List[int] = None,

        downsample_factors: List[int] = None,

        upsample_layer_indices: List[int] = None,

        upsample_factors: List[int] = None,

        interpolation_layer_indices: List[int] = None,

        input_dim: int = None,

        output_dim: int = None,

        gin_channels: int = 0,

    ):
        super().__init__()
        # maybe downsample layers
        if downsample_layer_indices is not None:
            assert downsample_factors is not None
            self.downsample_blocks = nn.ModuleList(
                [
                    nn.Sequential(
                        ConvNextV2LayerNorm(dim, data_format="channels_first"),
                        nn.Conv1d(
                            dim, dim, kernel_size=downsample_factor, stride=downsample_factor
                        ),
                    ) for _, downsample_factor in zip(downsample_layer_indices, downsample_factors)
                ]
            )
            self.downsample_layer_indices = downsample_layer_indices
        else:
            self.downsample_blocks = nn.ModuleList()
            self.downsample_layer_indices = []

        # maybe upsample layers
        if upsample_layer_indices is not None:
            assert upsample_factors is not None
            self.upsample_blocks = nn.ModuleList(
                [
                    nn.Sequential(
                        ConvNextV2LayerNorm(dim, data_format="channels_first"),
                        nn.ConvTranspose1d(
                            dim, dim, kernel_size=upsample_factor, stride=upsample_factor
                        ),
                    ) for _, upsample_factor in zip(upsample_layer_indices, upsample_factors)
                ]
            )
            self.upsample_layer_indices = upsample_layer_indices
        else:
            self.upsample_blocks = nn.ModuleList()
            self.upsample_layer_indices = []

        # maybe interpolation layers
        if interpolation_layer_indices is not None:
            self.interpolation_blocks = nn.ModuleList(
                [
                    InterpolationLayer()
                    for _ in interpolation_layer_indices
                ]
            )
            self.interpolation_layer_indices = interpolation_layer_indices
        else:
            self.interpolation_blocks = nn.ModuleList()
            self.interpolation_layer_indices = []

        # main blocks
        self.blocks = nn.ModuleList(
            [
                ConvNeXtV2Block(
                    dim=dim,
                    intermediate_dim=intermediate_dim,
                    dilation=dilation,
                )
                for _ in range(num_blocks)
            ]
        )
        # maybe input and output projections
        if input_dim is not None and input_dim != dim:
            self.input_projection = nn.Conv1d(input_dim, dim, kernel_size=1)
        else:
            self.input_projection = nn.Identity()
        if output_dim is not None and output_dim != dim:
            self.output_projection = nn.Conv1d(dim, output_dim, kernel_size=1)
        else:
            self.output_projection = nn.Identity()

        if gin_channels > 0:
            self.gin = nn.Conv1d(gin_channels, dim, kernel_size=1)

    def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
        x = self.input_projection(x)  # B, D, T
        if hasattr(self, 'gin'):
            g = kwargs['g']
            x = x + self.gin(g)
        # pad to a multiple of cumprod(downsample_factors)
        if len(self.downsample_blocks) > 0:
            downsample_factor = 1
            for factor in self.downsample_blocks:
                downsample_factor *= factor[1].stride[0]
            pad_len = downsample_factor - x.size(-1) % downsample_factor
            if pad_len > 0:
                x = torch.cat([x, torch.zeros_like(x[:, :, :pad_len])], dim=-1)

        # main blocks
        for layer_idx, block in enumerate(self.blocks):
            if layer_idx in self.downsample_layer_indices:
                x = self.downsample_blocks[self.downsample_layer_indices.index(layer_idx)](x)
            if layer_idx in self.upsample_layer_indices:
                x = self.upsample_blocks[self.upsample_layer_indices.index(layer_idx)](x)
            if layer_idx in self.interpolation_layer_indices:
                x = self.interpolation_blocks[self.interpolation_layer_indices.index(layer_idx)](x, target_len=kwargs['target_len'])
            x = block(x)
        x = self.output_projection(x)
        return x

    def setup_caches(self, *args, **kwargs):
        pass


class ConvNeXtV2Block(nn.Module):
    def __init__(

        self,

        dim: int,

        intermediate_dim: int,

        dilation: int = 1,

    ):
        super().__init__()
        padding = (dilation * (7 - 1)) // 2
        self.dwconv = nn.Conv1d(
            dim, dim, kernel_size=7, padding=padding, groups=dim, dilation=dilation
        )  # depthwise conv
        self.norm = ConvNextV2LayerNorm(dim, data_format="channels_first")
        self.pwconv1 = nn.Linear(
            dim, intermediate_dim
        )  # pointwise/1x1 convs, implemented with linear layers
        self.act = nn.GELU()
        self.grn = GRN(intermediate_dim)
        self.pwconv2 = nn.Linear(intermediate_dim, dim)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        residual = x
        x = self.dwconv(x)
        x = self.norm(x)
        x = x.transpose(1, 2)  # b d n -> b n d
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.grn(x)
        x = self.pwconv2(x)
        x = x.transpose(1, 2)  # b n d -> b d n
        return residual + x