Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,007 Bytes
56a1295 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
"""
Lookup Free Quantization
Proposed in https://arxiv.org/abs/2310.05737
In the simplest setup, each dimension is quantized into {-1, 1}.
An entropy penalty is used to encourage utilization.
"""
from math import log2, ceil
from functools import partial, cache
from collections import namedtuple
from contextlib import nullcontext
import torch.distributed as dist
from torch.distributed import nn as dist_nn
import torch
from torch import nn, einsum
import torch.nn.functional as F
from torch.nn import Module
from torch.amp import autocast
from einops import rearrange, reduce, pack, unpack
# constants
Return = namedtuple('Return', ['quantized', 'indices', 'entropy_aux_loss'])
LossBreakdown = namedtuple('LossBreakdown', ['per_sample_entropy', 'batch_entropy', 'commitment'])
# distributed helpers
@cache
def is_distributed():
return dist.is_initialized() and dist.get_world_size() > 1
def maybe_distributed_mean(t):
if not is_distributed():
return t
dist_nn.all_reduce(t)
t = t / dist.get_world_size()
return t
# helper functions
def exists(v):
return v is not None
def identity(t):
return t
def default(*args):
for arg in args:
if exists(arg):
return arg() if callable(arg) else arg
return None
def pack_one(t, pattern):
return pack([t], pattern)
def unpack_one(t, ps, pattern):
return unpack(t, ps, pattern)[0]
def l2norm(t):
return F.normalize(t, dim = -1)
# entropy
def log(t, eps = 1e-5):
return t.clamp(min = eps).log()
def entropy(prob):
return (-prob * log(prob)).sum(dim=-1)
# cosine sim linear
class CosineSimLinear(Module):
def __init__(
self,
dim_in,
dim_out,
scale = 1.
):
super().__init__()
self.scale = scale
self.weight = nn.Parameter(torch.randn(dim_in, dim_out))
def forward(self, x):
x = F.normalize(x, dim = -1)
w = F.normalize(self.weight, dim = 0)
return (x @ w) * self.scale
def soft_entropy_loss(u, tau=1.0, gamma=1.0):
"""
Compute the soft entropy loss for Binary Spherical Quantization (BSQ).
Args:
u (torch.Tensor): Input latent embeddings of shape (batch_size, L).
tau (float): Temperature scaling factor.
gamma (float): Weight for the second entropy term.
Returns:
torch.Tensor: Soft entropy loss.
"""
# Binary quantization: Generate implicit codebook corners
L = u.size(1) # Dimensionality of codebook
corners = torch.tensor([-1.0, 1.0], device=u.device) / (L**0.5)
# Compute soft quantization probabilities for all dimensions
# q_hat(c|u) for each dimension
prob_matrix = torch.sigmoid(2 * tau * corners.unsqueeze(1) * u.unsqueeze(2)) # Shape: (batch_size, L, 2)
# Entropy of q_hat(c|u) (independent along each dimension)
entropy_per_dim = -torch.sum(prob_matrix * prob_matrix.log(), dim=-1) # Shape: (batch_size, L)
entropy_term1 = entropy_per_dim.mean()
# Expected probabilities for dataset entropy (approximation)
expected_probs = prob_matrix.mean(dim=0) # Mean across batch, shape: (L, 2)
entropy_term2 = -torch.sum(expected_probs * expected_probs.log(), dim=-1).mean()
# Final entropy loss
loss = entropy_term1 - gamma * entropy_term2
return loss
# class
class BinarySphericalQuantize(Module):
def __init__(
self,
*,
dim = None,
codebook_size = None,
entropy_loss_weight = 0.1,
commitment_loss_weight = 0.,
diversity_gamma = 1.,
straight_through_activation = nn.Identity(),
num_codebooks = 1,
keep_num_codebooks_dim = None,
codebook_scale = 1., # for residual LFQ, codebook scaled down by 2x at each layer
frac_per_sample_entropy = 0.25, # make less than 1. to only use a random fraction of the probs for per sample entropy
has_projections = None,
projection_has_bias = True,
soft_clamp_input_value = None,
cosine_sim_project_in = False,
cosine_sim_project_in_scale = None,
channel_first = None,
experimental_softplus_entropy_loss = False,
entropy_loss_offset = 5., # how much to shift the loss before softplus
spherical = True, # from https://arxiv.org/abs/2406.07548
force_quantization_f32 = True, # will force the quantization step to be full precision
enable_entropy_loss = True,
soft_entropy_loss = True,
):
super().__init__()
# some assert validations
assert exists(dim) or exists(codebook_size), 'either dim or codebook_size must be specified for LFQ'
assert not exists(codebook_size) or log2(codebook_size).is_integer(), f'your codebook size must be a power of 2 for lookup free quantization (suggested {2 ** ceil(log2(codebook_size))})'
codebook_size = default(codebook_size, lambda: 2 ** dim)
self.codebook_size = codebook_size
codebook_dim = int(log2(codebook_size))
codebook_dims = codebook_dim * num_codebooks
dim = default(dim, codebook_dims)
has_projections = default(has_projections, dim != codebook_dims)
if cosine_sim_project_in:
cosine_sim_project_in = default(cosine_sim_project_in_scale, codebook_scale)
project_in_klass = partial(CosineSimLinear, scale = cosine_sim_project_in)
else:
project_in_klass = partial(nn.Linear, bias = projection_has_bias)
self.project_in = project_in_klass(dim, codebook_dims) if has_projections else nn.Identity()
self.project_out = nn.Linear(codebook_dims, dim, bias = projection_has_bias) if has_projections else nn.Identity()
self.has_projections = has_projections
self.dim = dim
self.codebook_dim = codebook_dim
self.num_codebooks = num_codebooks
keep_num_codebooks_dim = default(keep_num_codebooks_dim, num_codebooks > 1)
assert not (num_codebooks > 1 and not keep_num_codebooks_dim)
self.keep_num_codebooks_dim = keep_num_codebooks_dim
# channel first
self.channel_first = channel_first
# straight through activation
self.activation = straight_through_activation
# whether to use BSQ (binary spherical quantization)
self.spherical = spherical
self.maybe_l2norm = (lambda t: l2norm(t) * self.codebook_scale) if spherical else identity
# entropy aux loss related weights
assert 0 < frac_per_sample_entropy <= 1.
self.frac_per_sample_entropy = frac_per_sample_entropy
self.diversity_gamma = diversity_gamma
self.entropy_loss_weight = entropy_loss_weight
# codebook scale
self.codebook_scale = codebook_scale
# commitment loss
self.commitment_loss_weight = commitment_loss_weight
# whether to soft clamp the input value from -value to value
self.soft_clamp_input_value = soft_clamp_input_value
assert not exists(soft_clamp_input_value) or soft_clamp_input_value >= codebook_scale
# whether to make the entropy loss positive through a softplus (experimental, please report if this worked or not in discussions)
self.entropy_loss_offset = entropy_loss_offset
self.experimental_softplus_entropy_loss = experimental_softplus_entropy_loss
# for no auxiliary loss, during inference
self.register_buffer('mask', 2 ** torch.arange(codebook_dim - 1, -1, -1))
self.register_buffer('zero', torch.tensor(0.), persistent = False)
# whether to force quantization step to be f32
self.force_quantization_f32 = force_quantization_f32
# codes
self.enable_entropy_loss = enable_entropy_loss
self.soft_entropy_loss = soft_entropy_loss
if codebook_size <= 100000:
all_codes = torch.arange(codebook_size)
bits = ((all_codes[..., None].int() & self.mask) != 0).float()
codebook = self.bits_to_codes(bits)
self.register_buffer('codebook', codebook.float(), persistent = False)
else:
all_codes = torch.arange(pow(2, 16))
mask = 2 ** torch.arange(16 - 1, -1, -1)
bits = ((all_codes[..., None].int() & mask) != 0).float()
codebook = self.bits_to_codes(bits)
self.register_buffer('codebook', codebook.float(), persistent = False)
def bits_to_codes(self, bits):
return bits * self.codebook_scale * 2 - self.codebook_scale
@property
def dtype(self):
return self.codebook.dtype
def indices_to_codes(
self,
indices,
project_out = True
):
is_img_or_video = indices.ndim >= (3 + int(self.keep_num_codebooks_dim))
should_transpose = default(self.channel_first, is_img_or_video)
if not self.keep_num_codebooks_dim:
indices = rearrange(indices, '... -> ... 1')
# indices to codes, which are bits of either -1 or 1
bits = ((indices[..., None].int() & self.mask) != 0).to(self.dtype)
codes = self.bits_to_codes(bits)
codes = self.maybe_l2norm(codes)
codes = rearrange(codes, '... c d -> ... (c d)')
# whether to project codes out to original dimensions
# if the input feature dimensions were not log2(codebook size)
if project_out:
codes = self.project_out(codes)
# rearrange codes back to original shape
if should_transpose:
codes = rearrange(codes, 'b ... d -> b d ...')
return codes
def bits_to_z(self, bits):
# assert bits must contain only -1 and 1
assert torch.all(bits.abs() == 1)
quantized = bits.float()
quantized = self.maybe_l2norm(quantized)
z = self.project_out(quantized)
return z
def forward(
self,
x,
inv_temperature = 100.,
return_loss_breakdown = False,
mask = None,
return_bits = False
):
"""
einstein notation
b - batch
n - sequence (or flattened spatial dimensions)
d - feature dimension, which is also log2(codebook size)
c - number of codebook dim
"""
is_img_or_video = x.ndim >= 4
should_transpose = default(self.channel_first, is_img_or_video)
# standardize image or video into (batch, seq, dimension)
if should_transpose:
x = rearrange(x, 'b d ... -> b ... d')
x, ps = pack_one(x, 'b * d')
assert x.shape[-1] == self.dim, f'expected dimension of {self.dim} but received {x.shape[-1]}'
x = self.project_in(x)
# maybe soft clamp
if exists(self.soft_clamp_input_value):
clamp_value = self.soft_clamp_input_value
x = (x / clamp_value).tanh() * clamp_value
# split out number of codebooks
x = rearrange(x, 'b n (c d) -> b n c d', c = self.num_codebooks)
# maybe l2norm
x = self.maybe_l2norm(x)
# whether to force quantization step to be full precision or not
force_f32 = self.force_quantization_f32
quantization_context = partial(autocast, 'cuda', enabled = False) if force_f32 else nullcontext
with quantization_context():
if force_f32:
orig_dtype = x.dtype
x = x.float()
# quantize by eq 3.
original_input = x
codebook_value = torch.ones_like(x) * self.codebook_scale
quantized = torch.where(x > 0, codebook_value, -codebook_value)
if return_bits:
return quantized
# calculate indices
indices = reduce((quantized > 0).int() * self.mask.int(), 'b n c d -> b n c', 'sum')
# maybe l2norm
quantized = self.maybe_l2norm(quantized)
# use straight-through gradients (optionally with custom activation fn) if training
if self.training:
x = self.activation(x)
x = x + (quantized - x).detach()
else:
x = quantized
# entropy aux loss
if self.soft_entropy_loss:
entropy_aux_loss = soft_entropy_loss(x, tau=1.0, gamma=1.0)
elif self.training and self.enable_entropy_loss:
if force_f32:
codebook = self.codebook.float()
codebook = self.maybe_l2norm(codebook)
# whether to only use a fraction of probs, for reducing memory
if self.frac_per_sample_entropy < 1.:
# account for mask
if exists(mask):
original_input = original_input[mask]
original_input = rearrange(original_input, 'b n ... -> (b n) ...')
rand_mask = torch.randn(self.codebook_dim).argsort(dim = -1) < 16
sampled_input = original_input[..., rand_mask]
sampled_distance = -2 * einsum('... i d, j d -> ... i j', sampled_input, codebook)
sampled_prob = (-sampled_distance * inv_temperature).softmax(dim = -1)
per_sample_probs = sampled_prob
else:
if exists(mask):
original_input = original_input[mask]
original_input = rearrange(original_input, 'b n ... -> (b n) ...')
# the same as euclidean distance up to a constant
distance = -2 * einsum('... i d, j d -> ... i j', original_input, codebook)
prob = (-distance * inv_temperature).softmax(dim = -1)
per_sample_probs = prob
# calculate per sample entropy
per_sample_entropy = entropy(per_sample_probs).mean()
# distribution over all available tokens in the batch
avg_prob = reduce(per_sample_probs, '... c d -> c d', 'mean')
avg_prob = maybe_distributed_mean(avg_prob)
codebook_entropy = entropy(avg_prob).mean()
# 1. entropy will be nudged to be low for each code, to encourage the network to output confident predictions
# 2. codebook entropy will be nudged to be high, to encourage all codes to be uniformly used within the batch
entropy_aux_loss = per_sample_entropy - self.diversity_gamma * codebook_entropy
else:
# if not training, just return dummy 0
entropy_aux_loss = per_sample_entropy = codebook_entropy = self.zero
# whether to make the entropy loss positive or not through a (shifted) softplus
if self.training and self.experimental_softplus_entropy_loss:
entropy_aux_loss = F.softplus(entropy_aux_loss + self.entropy_loss_offset)
# commit loss
if self.training and self.commitment_loss_weight > 0.:
commit_loss = F.mse_loss(original_input, quantized.detach(), reduction = 'none')
if exists(mask):
commit_loss = commit_loss[mask]
commit_loss = commit_loss.mean()
else:
commit_loss = self.zero
# input back to original dtype if needed
if force_f32:
x = x.type(orig_dtype)
# merge back codebook dim
x = rearrange(x, 'b n c d -> b n (c d)')
# project out to feature dimension if needed
x = self.project_out(x)
# reconstitute image or video dimensions
if should_transpose:
x = unpack_one(x, ps, 'b * d')
x = rearrange(x, 'b ... d -> b d ...')
indices = unpack_one(indices, ps, 'b * c')
# whether to remove single codebook dim
if not self.keep_num_codebooks_dim:
indices = rearrange(indices, '... 1 -> ...')
# complete aux loss
aux_loss = entropy_aux_loss * self.entropy_loss_weight + commit_loss * self.commitment_loss_weight
# returns
ret = Return(x, indices, aux_loss)
if not return_loss_breakdown:
return ret
return ret, LossBreakdown(per_sample_entropy, codebook_entropy, commit_loss)
class GroupedResidualBSQ(Module):
def __init__(
self,
*,
dim,
groups = 1,
accept_image_fmap = False,
**kwargs
):
super().__init__()
self.dim = dim
self.groups = groups
assert (dim % groups) == 0
dim_per_group = dim // groups
self.accept_image_fmap = accept_image_fmap
self.rvqs = nn.ModuleList([])
for _ in range(groups):
self.rvqs.append(LFQ(
dim = dim_per_group,
**kwargs
))
self.codebook_size = self.rvqs[0].codebook_size
@property
def codebooks(self):
return torch.stack(tuple(rvq.codebooks for rvq in self.rvqs))
@property
def split_dim(self):
return 1 if self.accept_image_fmap else -1
def get_codes_from_indices(self, indices):
codes = tuple(rvq.get_codes_from_indices(chunk_indices) for rvq, chunk_indices in zip(self.rvqs, indices))
return torch.stack(codes)
def get_output_from_indices(self, indices):
outputs = tuple(rvq.get_output_from_indices(chunk_indices) for rvq, chunk_indices in zip(self.rvqs, indices))
return torch.cat(outputs, dim = self.split_dim)
def forward(
self,
x,
return_all_codes = False
):
shape, split_dim = x.shape, self.split_dim
assert shape[split_dim] == self.dim
# split the feature dimension into groups
x = x.chunk(self.groups, dim = split_dim)
forward_kwargs = dict(
)
# invoke residual vq on each group
out = tuple(rvq(chunk, **forward_kwargs) for rvq, chunk in zip(self.rvqs, x))
out = tuple(zip(*out))
# otherwise, get all the zipped outputs and combine them
quantized, all_indices, *maybe_aux_loss = out
quantized = torch.cat(quantized, dim = split_dim)
all_indices = torch.stack(all_indices)
ret = (quantized, all_indices, *maybe_aux_loss)
return ret
|