File size: 22,299 Bytes
56a1295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
import spaces
import torch
import torchaudio
import librosa
import numpy as np
from pydub import AudioSegment
import yaml
from modules.commons import build_model, load_checkpoint, recursive_munch
from hf_utils import load_custom_model_from_hf
from modules.campplus.DTDNN import CAMPPlus
from modules.bigvgan import bigvgan
from modules.audio import mel_spectrogram
from modules.rmvpe import RMVPE
from transformers import AutoFeatureExtractor, WhisperModel

class SeedVCWrapper:
    def __init__(self, device=None):
        """

        Initialize the Seed-VC wrapper with all necessary models and configurations.

        

        Args:

            device: torch device to use. If None, will be automatically determined.

        """
        # Set device
        if device is None:
            if torch.cuda.is_available():
                self.device = torch.device("cuda")
            elif torch.backends.mps.is_available():
                self.device = torch.device("mps")
            else:
                self.device = torch.device("cpu")
        else:
            self.device = device
            
        # Load base model and configuration
        self._load_base_model()
        
        # Load F0 conditioned model
        self._load_f0_model()
        
        # Load additional modules
        self._load_additional_modules()
        
        # Set streaming parameters
        self.overlap_frame_len = 16
        self.bitrate = "320k"
        
    def _load_base_model(self):
        """Load the base DiT model for voice conversion."""
        dit_checkpoint_path, dit_config_path = load_custom_model_from_hf(
            "Plachta/Seed-VC",
            "DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth",
            "config_dit_mel_seed_uvit_whisper_small_wavenet.yml"
        )
        config = yaml.safe_load(open(dit_config_path, 'r'))
        model_params = recursive_munch(config['model_params'])
        self.model = build_model(model_params, stage='DiT')
        self.hop_length = config['preprocess_params']['spect_params']['hop_length']
        self.sr = config['preprocess_params']['sr']
        
        # Load checkpoints
        self.model, _, _, _ = load_checkpoint(
            self.model, None, dit_checkpoint_path,
            load_only_params=True, ignore_modules=[], is_distributed=False
        )
        for key in self.model:
            self.model[key].eval()
            self.model[key].to(self.device)
        self.model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
        
        # Set up mel spectrogram function
        mel_fn_args = {
            "n_fft": config['preprocess_params']['spect_params']['n_fft'],
            "win_size": config['preprocess_params']['spect_params']['win_length'],
            "hop_size": config['preprocess_params']['spect_params']['hop_length'],
            "num_mels": config['preprocess_params']['spect_params']['n_mels'],
            "sampling_rate": self.sr,
            "fmin": 0,
            "fmax": None,
            "center": False
        }
        self.to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)
        
        # Load whisper model
        whisper_name = model_params.speech_tokenizer.whisper_name if hasattr(model_params.speech_tokenizer, 'whisper_name') else "openai/whisper-small"
        self.whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float16).to(self.device)
        del self.whisper_model.decoder
        self.whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name)
        
    def _load_f0_model(self):
        """Load the F0 conditioned model for voice conversion."""
        dit_checkpoint_path, dit_config_path = load_custom_model_from_hf(
            "Plachta/Seed-VC",
            "DiT_seed_v2_uvit_whisper_base_f0_44k_bigvgan_pruned_ft_ema.pth",
            "config_dit_mel_seed_uvit_whisper_base_f0_44k.yml"
        )
        config = yaml.safe_load(open(dit_config_path, 'r'))
        model_params = recursive_munch(config['model_params'])
        self.model_f0 = build_model(model_params, stage='DiT')
        self.hop_length_f0 = config['preprocess_params']['spect_params']['hop_length']
        self.sr_f0 = config['preprocess_params']['sr']
        
        # Load checkpoints
        self.model_f0, _, _, _ = load_checkpoint(
            self.model_f0, None, dit_checkpoint_path,
            load_only_params=True, ignore_modules=[], is_distributed=False
        )
        for key in self.model_f0:
            self.model_f0[key].eval()
            self.model_f0[key].to(self.device)
        self.model_f0.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
        
        # Set up mel spectrogram function for F0 model
        mel_fn_args_f0 = {
            "n_fft": config['preprocess_params']['spect_params']['n_fft'],
            "win_size": config['preprocess_params']['spect_params']['win_length'],
            "hop_size": config['preprocess_params']['spect_params']['hop_length'],
            "num_mels": config['preprocess_params']['spect_params']['n_mels'],
            "sampling_rate": self.sr_f0,
            "fmin": 0,
            "fmax": None,
            "center": False
        }
        self.to_mel_f0 = lambda x: mel_spectrogram(x, **mel_fn_args_f0)
        
    def _load_additional_modules(self):
        """Load additional modules like CAMPPlus, BigVGAN, and RMVPE."""
        # Load CAMPPlus
        campplus_ckpt_path = load_custom_model_from_hf("funasr/campplus", "campplus_cn_common.bin", config_filename=None)
        self.campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
        self.campplus_model.load_state_dict(torch.load(campplus_ckpt_path, map_location="cpu"))
        self.campplus_model.eval()
        self.campplus_model.to(self.device)
        
        # Load BigVGAN models
        self.bigvgan_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_22khz_80band_256x', use_cuda_kernel=False)
        self.bigvgan_model.remove_weight_norm()
        self.bigvgan_model = self.bigvgan_model.eval().to(self.device)
        
        self.bigvgan_44k_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_44khz_128band_512x', use_cuda_kernel=False)
        self.bigvgan_44k_model.remove_weight_norm()
        self.bigvgan_44k_model = self.bigvgan_44k_model.eval().to(self.device)
        
        # Load RMVPE for F0 extraction
        model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None)
        self.rmvpe = RMVPE(model_path, is_half=False, device=self.device)
        
    @staticmethod
    def adjust_f0_semitones(f0_sequence, n_semitones):
        """Adjust F0 values by a number of semitones."""
        factor = 2 ** (n_semitones / 12)
        return f0_sequence * factor
    
    @staticmethod
    def crossfade(chunk1, chunk2, overlap):
        """Apply crossfade between two audio chunks."""
        fade_out = np.cos(np.linspace(0, np.pi / 2, overlap)) ** 2
        fade_in = np.cos(np.linspace(np.pi / 2, 0, overlap)) ** 2
        if len(chunk2) < overlap:
            chunk2[:overlap] = chunk2[:overlap] * fade_in[:len(chunk2)] + (chunk1[-overlap:] * fade_out)[:len(chunk2)]
        else:
            chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out
        return chunk2
    
    def _stream_wave_chunks(self, vc_wave, processed_frames, vc_target, overlap_wave_len, 

                           generated_wave_chunks, previous_chunk, is_last_chunk, stream_output, sr):
        """

        Helper method to handle streaming wave chunks.

        

        Args:

            vc_wave: The current wave chunk

            processed_frames: Number of frames processed so far

            vc_target: The target mel spectrogram

            overlap_wave_len: Length of overlap between chunks

            generated_wave_chunks: List of generated wave chunks

            previous_chunk: Previous wave chunk for crossfading

            is_last_chunk: Whether this is the last chunk

            stream_output: Whether to stream the output

            sr: Sample rate

            

        Returns:

            Tuple of (processed_frames, previous_chunk, should_break, mp3_bytes, full_audio)

            where should_break indicates if processing should stop

            mp3_bytes is the MP3 bytes if streaming, None otherwise

            full_audio is the full audio if this is the last chunk, None otherwise

        """
        mp3_bytes = None
        full_audio = None
        
        if processed_frames == 0:
            if is_last_chunk:
                output_wave = vc_wave[0].cpu().numpy()
                generated_wave_chunks.append(output_wave)
                
                if stream_output:
                    output_wave_int16 = (output_wave * 32768.0).astype(np.int16)
                    mp3_bytes = AudioSegment(
                        output_wave_int16.tobytes(), frame_rate=sr,
                        sample_width=output_wave_int16.dtype.itemsize, channels=1
                    ).export(format="mp3", bitrate=self.bitrate).read()
                    full_audio = (sr, np.concatenate(generated_wave_chunks))
                else:
                    return processed_frames, previous_chunk, True, None, np.concatenate(generated_wave_chunks)
                
                return processed_frames, previous_chunk, True, mp3_bytes, full_audio
            
            output_wave = vc_wave[0, :-overlap_wave_len].cpu().numpy()
            generated_wave_chunks.append(output_wave)
            previous_chunk = vc_wave[0, -overlap_wave_len:]
            processed_frames += vc_target.size(2) - self.overlap_frame_len
            
            if stream_output:
                output_wave_int16 = (output_wave * 32768.0).astype(np.int16)
                mp3_bytes = AudioSegment(
                    output_wave_int16.tobytes(), frame_rate=sr,
                    sample_width=output_wave_int16.dtype.itemsize, channels=1
                ).export(format="mp3", bitrate=self.bitrate).read()
            
        elif is_last_chunk:
            output_wave = self.crossfade(previous_chunk.cpu().numpy(), vc_wave[0].cpu().numpy(), overlap_wave_len)
            generated_wave_chunks.append(output_wave)
            processed_frames += vc_target.size(2) - self.overlap_frame_len
            
            if stream_output:
                output_wave_int16 = (output_wave * 32768.0).astype(np.int16)
                mp3_bytes = AudioSegment(
                    output_wave_int16.tobytes(), frame_rate=sr,
                    sample_width=output_wave_int16.dtype.itemsize, channels=1
                ).export(format="mp3", bitrate=self.bitrate).read()
                full_audio = (sr, np.concatenate(generated_wave_chunks))
            else:
                return processed_frames, previous_chunk, True, None, np.concatenate(generated_wave_chunks)
            
            return processed_frames, previous_chunk, True, mp3_bytes, full_audio
            
        else:
            output_wave = self.crossfade(previous_chunk.cpu().numpy(), vc_wave[0, :-overlap_wave_len].cpu().numpy(), overlap_wave_len)
            generated_wave_chunks.append(output_wave)
            previous_chunk = vc_wave[0, -overlap_wave_len:]
            processed_frames += vc_target.size(2) - self.overlap_frame_len
            
            if stream_output:
                output_wave_int16 = (output_wave * 32768.0).astype(np.int16)
                mp3_bytes = AudioSegment(
                    output_wave_int16.tobytes(), frame_rate=sr,
                    sample_width=output_wave_int16.dtype.itemsize, channels=1
                ).export(format="mp3", bitrate=self.bitrate).read()
                
        return processed_frames, previous_chunk, False, mp3_bytes, full_audio

    def _process_whisper_features(self, audio_16k, is_source=True):
        """Process audio through Whisper model to extract features."""
        if audio_16k.size(-1) <= 16000 * 30:
            # If audio is short enough, process in one go
            inputs = self.whisper_feature_extractor(
                [audio_16k.squeeze(0).cpu().numpy()],
                return_tensors="pt",
                return_attention_mask=True,
                sampling_rate=16000
            )
            input_features = self.whisper_model._mask_input_features(
                inputs.input_features, attention_mask=inputs.attention_mask
            ).to(self.device)
            outputs = self.whisper_model.encoder(
                input_features.to(self.whisper_model.encoder.dtype),
                head_mask=None,
                output_attentions=False,
                output_hidden_states=False,
                return_dict=True,
            )
            features = outputs.last_hidden_state.to(torch.float32)
            features = features[:, :audio_16k.size(-1) // 320 + 1]
        else:
            # Process long audio in chunks
            overlapping_time = 5  # 5 seconds
            features_list = []
            buffer = None
            traversed_time = 0
            while traversed_time < audio_16k.size(-1):
                if buffer is None:  # first chunk
                    chunk = audio_16k[:, traversed_time:traversed_time + 16000 * 30]
                else:
                    chunk = torch.cat([
                        buffer, 
                        audio_16k[:, traversed_time:traversed_time + 16000 * (30 - overlapping_time)]
                    ], dim=-1)
                inputs = self.whisper_feature_extractor(
                    [chunk.squeeze(0).cpu().numpy()],
                    return_tensors="pt",
                    return_attention_mask=True,
                    sampling_rate=16000
                )
                input_features = self.whisper_model._mask_input_features(
                    inputs.input_features, attention_mask=inputs.attention_mask
                ).to(self.device)
                outputs = self.whisper_model.encoder(
                    input_features.to(self.whisper_model.encoder.dtype),
                    head_mask=None,
                    output_attentions=False,
                    output_hidden_states=False,
                    return_dict=True,
                )
                chunk_features = outputs.last_hidden_state.to(torch.float32)
                chunk_features = chunk_features[:, :chunk.size(-1) // 320 + 1]
                if traversed_time == 0:
                    features_list.append(chunk_features)
                else:
                    features_list.append(chunk_features[:, 50 * overlapping_time:])
                buffer = chunk[:, -16000 * overlapping_time:]
                traversed_time += 30 * 16000 if traversed_time == 0 else chunk.size(-1) - 16000 * overlapping_time
            features = torch.cat(features_list, dim=1)
        
        return features

    @spaces.GPU
    @torch.no_grad()
    @torch.inference_mode()
    def convert_voice(self, source, target, diffusion_steps=10, length_adjust=1.0,

                     inference_cfg_rate=0.7, f0_condition=False, auto_f0_adjust=True, 

                     pitch_shift=0, stream_output=True):
        """

        Convert both timbre and voice from source to target.

        

        Args:

            source: Path to source audio file

            target: Path to target audio file

            diffusion_steps: Number of diffusion steps (default: 10)

            length_adjust: Length adjustment factor (default: 1.0)

            inference_cfg_rate: Inference CFG rate (default: 0.7)

            f0_condition: Whether to use F0 conditioning (default: False)

            auto_f0_adjust: Whether to automatically adjust F0 (default: True)

            pitch_shift: Pitch shift in semitones (default: 0)

            stream_output: Whether to stream the output (default: True)

            

        Returns:

            If stream_output is True, yields (mp3_bytes, full_audio) tuples

            If stream_output is False, returns the full audio as a numpy array

        """
        # Select appropriate models based on F0 condition
        inference_module = self.model if not f0_condition else self.model_f0
        mel_fn = self.to_mel if not f0_condition else self.to_mel_f0
        bigvgan_fn = self.bigvgan_model if not f0_condition else self.bigvgan_44k_model
        sr = 22050 if not f0_condition else 44100
        hop_length = 256 if not f0_condition else 512
        max_context_window = sr // hop_length * 30
        overlap_wave_len = self.overlap_frame_len * hop_length
        
        # Load audio
        source_audio = librosa.load(source, sr=sr)[0]
        ref_audio = librosa.load(target, sr=sr)[0]
        
        # Process audio
        source_audio = torch.tensor(source_audio).unsqueeze(0).float().to(self.device)
        ref_audio = torch.tensor(ref_audio[:sr * 25]).unsqueeze(0).float().to(self.device)
        
        # Resample to 16kHz for feature extraction
        ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
        converted_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000)
        
        # Extract Whisper features
        S_alt = self._process_whisper_features(converted_waves_16k, is_source=True)
        S_ori = self._process_whisper_features(ref_waves_16k, is_source=False)
        
        # Compute mel spectrograms
        mel = mel_fn(source_audio.to(self.device).float())
        mel2 = mel_fn(ref_audio.to(self.device).float())
        
        # Set target lengths
        target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device)
        target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device)
        
        # Compute style features
        feat2 = torchaudio.compliance.kaldi.fbank(
            ref_waves_16k,
            num_mel_bins=80,
            dither=0,
            sample_frequency=16000
        )
        feat2 = feat2 - feat2.mean(dim=0, keepdim=True)
        style2 = self.campplus_model(feat2.unsqueeze(0))
        
        # Process F0 if needed
        if f0_condition:
            F0_ori = self.rmvpe.infer_from_audio(ref_waves_16k[0], thred=0.03)
            F0_alt = self.rmvpe.infer_from_audio(converted_waves_16k[0], thred=0.03)
            
            if self.device == "mps":
                F0_ori = torch.from_numpy(F0_ori).float().to(self.device)[None]
                F0_alt = torch.from_numpy(F0_alt).float().to(self.device)[None]
            else:
                F0_ori = torch.from_numpy(F0_ori).to(self.device)[None]
                F0_alt = torch.from_numpy(F0_alt).to(self.device)[None]
            
            voiced_F0_ori = F0_ori[F0_ori > 1]
            voiced_F0_alt = F0_alt[F0_alt > 1]
            
            log_f0_alt = torch.log(F0_alt + 1e-5)
            voiced_log_f0_ori = torch.log(voiced_F0_ori + 1e-5)
            voiced_log_f0_alt = torch.log(voiced_F0_alt + 1e-5)
            median_log_f0_ori = torch.median(voiced_log_f0_ori)
            median_log_f0_alt = torch.median(voiced_log_f0_alt)
            
            # Shift alt log f0 level to ori log f0 level
            shifted_log_f0_alt = log_f0_alt.clone()
            if auto_f0_adjust:
                shifted_log_f0_alt[F0_alt > 1] = log_f0_alt[F0_alt > 1] - median_log_f0_alt + median_log_f0_ori
            shifted_f0_alt = torch.exp(shifted_log_f0_alt)
            if pitch_shift != 0:
                shifted_f0_alt[F0_alt > 1] = self.adjust_f0_semitones(shifted_f0_alt[F0_alt > 1], pitch_shift)
        else:
            F0_ori = None
            F0_alt = None
            shifted_f0_alt = None
        
        # Length regulation
        cond, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator(
            S_alt, ylens=target_lengths, n_quantizers=3, f0=shifted_f0_alt
        )
        prompt_condition, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator(
            S_ori, ylens=target2_lengths, n_quantizers=3, f0=F0_ori
        )
        
        # Process in chunks for streaming
        max_source_window = max_context_window - mel2.size(2)
        processed_frames = 0
        generated_wave_chunks = []
        previous_chunk = None
        
        # Generate chunk by chunk and stream the output
        while processed_frames < cond.size(1):
            chunk_cond = cond[:, processed_frames:processed_frames + max_source_window]
            is_last_chunk = processed_frames + max_source_window >= cond.size(1)
            cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1)
            
            with torch.autocast(device_type=self.device.type, dtype=torch.float16):
                # Voice Conversion
                vc_target = inference_module.cfm.inference(
                    cat_condition,
                    torch.LongTensor([cat_condition.size(1)]).to(mel2.device),
                    mel2, style2, None, diffusion_steps,
                    inference_cfg_rate=inference_cfg_rate
                )
                vc_target = vc_target[:, :, mel2.size(-1):]
            
            vc_wave = bigvgan_fn(vc_target.float())[0]
            
            processed_frames, previous_chunk, should_break, mp3_bytes, full_audio = self._stream_wave_chunks(
                vc_wave, processed_frames, vc_target, overlap_wave_len, 
                generated_wave_chunks, previous_chunk, is_last_chunk, stream_output, sr
            )
            
            if stream_output and mp3_bytes is not None:
                yield mp3_bytes, full_audio
                
            if should_break:
                if not stream_output:
                    return full_audio
                break
        
        if not stream_output:
            return np.concatenate(generated_wave_chunks)
        
        return None, None