Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,967 Bytes
56a1295 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 |
import torch
from torch import nn
import math
# from modules.torchscript_modules.gpt_fast_model import ModelArgs, Transformer
from modules.wavenet import WN
from modules.commons import sequence_mask
from torch.nn.utils import weight_norm
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass
from typing import Optional
import torch
import torch.nn as nn
from torch import Tensor
from torch.nn import functional as F
def find_multiple(n: int, k: int) -> int:
if n % k == 0:
return n
return n + k - (n % k)
class AdaptiveLayerNorm(nn.Module):
r"""Adaptive Layer Normalization"""
def __init__(self, d_model, norm) -> None:
super(AdaptiveLayerNorm, self).__init__()
self.project_layer = nn.Linear(d_model, 2 * d_model)
self.norm = norm
self.d_model = d_model
self.eps = self.norm.eps
def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
if embedding is None:
return self.norm(input)
weight, bias = torch.split(
self.project_layer(embedding),
split_size_or_sections=self.d_model,
dim=-1,
)
return weight * self.norm(input) + bias
@dataclass
class ModelArgs:
block_size: int = 2048
vocab_size: int = 32000
n_layer: int = 32
n_head: int = 32
dim: int = 4096
intermediate_size: int = None
n_local_heads: int = -1
head_dim: int = 64
rope_base: float = 10000
norm_eps: float = 1e-5
has_cross_attention: bool = False
context_dim: int = 0
uvit_skip_connection: bool = False
time_as_token: bool = False
def __post_init__(self):
if self.n_local_heads == -1:
self.n_local_heads = self.n_head
if self.intermediate_size is None:
hidden_dim = 4 * self.dim
n_hidden = int(2 * hidden_dim / 3)
self.intermediate_size = find_multiple(n_hidden, 256)
# self.head_dim = self.dim // self.n_head
class Transformer(nn.Module):
def __init__(self, config: ModelArgs) -> None:
super().__init__()
self.config = config
self.layers = nn.ModuleList(TransformerBlock(config) for _ in range(config.n_layer))
self.norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
self.freqs_cis: Optional[Tensor] = None
self.mask_cache: Optional[Tensor] = None
self.max_batch_size = -1
self.max_seq_length = -1
def setup_caches(self, max_batch_size, max_seq_length, use_kv_cache=False):
if self.max_seq_length >= max_seq_length and self.max_batch_size >= max_batch_size:
return
head_dim = self.config.dim // self.config.n_head
max_seq_length = find_multiple(max_seq_length, 8)
self.max_seq_length = max_seq_length
self.max_batch_size = max_batch_size
dtype = self.norm.project_layer.weight.dtype
device = self.norm.project_layer.weight.device
self.freqs_cis = precompute_freqs_cis(self.config.block_size, self.config.head_dim,
self.config.rope_base, dtype).to(device)
self.causal_mask = torch.tril(torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool)).to(device)
self.use_kv_cache = use_kv_cache
self.uvit_skip_connection = self.config.uvit_skip_connection
if self.uvit_skip_connection:
self.layers_emit_skip = [i for i in range(self.config.n_layer) if i < self.config.n_layer // 2]
self.layers_receive_skip = [i for i in range(self.config.n_layer) if i > self.config.n_layer // 2]
else:
self.layers_emit_skip = []
self.layers_receive_skip = []
def forward(self,
x: Tensor,
c: Tensor,
input_pos: Optional[Tensor] = None,
mask: Optional[Tensor] = None,
context: Optional[Tensor] = None,
context_input_pos: Optional[Tensor] = None,
cross_attention_mask: Optional[Tensor] = None,
) -> Tensor:
assert self.freqs_cis is not None, "Caches must be initialized first"
if mask is None: # in case of non-causal model
if not self.training and self.use_kv_cache:
mask = self.causal_mask[None, None, input_pos]
else:
mask = self.causal_mask[None, None, input_pos]
mask = mask[..., input_pos]
freqs_cis = self.freqs_cis[input_pos]
if context is not None:
context_freqs_cis = self.freqs_cis[context_input_pos]
else:
context_freqs_cis = None
skip_in_x_list = []
for i, layer in enumerate(self.layers):
if self.uvit_skip_connection and i in self.layers_receive_skip:
skip_in_x = skip_in_x_list.pop(-1)
else:
skip_in_x = None
x = layer(x, c, input_pos, freqs_cis, mask, context, context_freqs_cis, cross_attention_mask, skip_in_x)
if self.uvit_skip_connection and i in self.layers_emit_skip:
skip_in_x_list.append(x)
x = self.norm(x, c)
return x
@classmethod
def from_name(cls, name: str):
return cls(ModelArgs.from_name(name))
class TransformerBlock(nn.Module):
def __init__(self, config: ModelArgs) -> None:
super().__init__()
self.attention = Attention(config)
self.feed_forward = FeedForward(config)
self.ffn_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
self.attention_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
if config.has_cross_attention:
self.has_cross_attention = True
self.cross_attention = Attention(config, is_cross_attention=True)
self.cross_attention_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
else:
self.has_cross_attention = False
if config.uvit_skip_connection:
self.skip_in_linear = nn.Linear(config.dim * 2, config.dim)
self.uvit_skip_connection = True
else:
self.uvit_skip_connection = False
self.time_as_token = config.time_as_token
def forward(self,
x: Tensor,
c: Tensor,
input_pos: Tensor,
freqs_cis: Tensor,
mask: Tensor,
context: Optional[Tensor] = None,
context_freqs_cis: Optional[Tensor] = None,
cross_attention_mask: Optional[Tensor] = None,
skip_in_x: Optional[Tensor] = None,
) -> Tensor:
c = None if self.time_as_token else c
if self.uvit_skip_connection and skip_in_x is not None:
x = self.skip_in_linear(torch.cat([x, skip_in_x], dim=-1))
h = x + self.attention(self.attention_norm(x, c), freqs_cis, mask, input_pos)
if self.has_cross_attention:
h = h + self.cross_attention(self.cross_attention_norm(h, c), freqs_cis, cross_attention_mask, input_pos, context, context_freqs_cis)
out = h + self.feed_forward(self.ffn_norm(h, c))
return out
class Attention(nn.Module):
def __init__(self, config: ModelArgs, is_cross_attention: bool = False):
super().__init__()
assert config.dim % config.n_head == 0
total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim
# key, query, value projections for all heads, but in a batch
if is_cross_attention:
self.wq = nn.Linear(config.dim, config.n_head * config.head_dim, bias=False)
self.wkv = nn.Linear(config.context_dim, 2 * config.n_local_heads * config.head_dim, bias=False)
else:
self.wqkv = nn.Linear(config.dim, total_head_dim, bias=False)
self.wo = nn.Linear(config.head_dim * config.n_head, config.dim, bias=False)
self.kv_cache = None
self.n_head = config.n_head
self.head_dim = config.head_dim
self.n_local_heads = config.n_local_heads
self.dim = config.dim
# self._register_load_state_dict_pre_hook(self.load_hook)
# def load_hook(self, state_dict, prefix, *args):
# if prefix + "wq.weight" in state_dict:
# wq = state_dict.pop(prefix + "wq.weight")
# wk = state_dict.pop(prefix + "wk.weight")
# wv = state_dict.pop(prefix + "wv.weight")
# state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv])
def forward(self,
x: Tensor,
freqs_cis: Tensor,
mask: Tensor,
input_pos: Optional[Tensor] = None,
context: Optional[Tensor] = None,
context_freqs_cis: Optional[Tensor] = None,
) -> Tensor:
bsz, seqlen, _ = x.shape
kv_size = self.n_local_heads * self.head_dim
if context is None:
q, k, v = self.wqkv(x).split([kv_size, kv_size, kv_size], dim=-1)
context_seqlen = seqlen
else:
q = self.wq(x)
k, v = self.wkv(context).split([kv_size, kv_size], dim=-1)
context_seqlen = context.shape[1]
q = q.view(bsz, seqlen, self.n_head, self.head_dim)
k = k.view(bsz, context_seqlen, self.n_local_heads, self.head_dim)
v = v.view(bsz, context_seqlen, self.n_local_heads, self.head_dim)
q = apply_rotary_emb(q, freqs_cis)
k = apply_rotary_emb(k, context_freqs_cis if context_freqs_cis is not None else freqs_cis)
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))
if self.kv_cache is not None:
k, v = self.kv_cache.update(input_pos, k, v)
k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
y = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0)
y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.head_dim * self.n_head)
y = self.wo(y)
return y
class FeedForward(nn.Module):
def __init__(self, config: ModelArgs) -> None:
super().__init__()
self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False)
self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False)
self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False)
def forward(self, x: Tensor) -> Tensor:
return self.w2(F.silu(self.w1(x)) * self.w3(x))
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
def forward(self, x: Tensor) -> Tensor:
output = self._norm(x.float()).type_as(x)
return output * self.weight
def precompute_freqs_cis(
seq_len: int, n_elem: int, base: int = 10000,
dtype: torch.dtype = torch.bfloat16
) -> Tensor:
freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem))
t = torch.arange(seq_len, device=freqs.device)
freqs = torch.outer(t, freqs)
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
return cache.to(dtype=dtype)
def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor:
xshaped = x.float().reshape(*x.shape[:-1], -1, 2)
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2)
x_out2 = torch.stack(
[
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
],
-1,
)
x_out2 = x_out2.flatten(3)
return x_out2.type_as(x)
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
#################################################################################
# Embedding Layers for Timesteps and Class Labels #
#################################################################################
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
self.max_period = 10000
self.scale = 1000
half = frequency_embedding_size // 2
freqs = torch.exp(
-math.log(self.max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
)
self.register_buffer("freqs", freqs)
def timestep_embedding(self, t):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
args = self.scale * t[:, None].float() * self.freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if self.frequency_embedding_size % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t)
t_emb = self.mlp(t_freq)
return t_emb
class StyleEmbedder(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, input_size, hidden_size, dropout_prob):
super().__init__()
use_cfg_embedding = dropout_prob > 0
self.embedding_table = nn.Embedding(int(use_cfg_embedding), hidden_size)
self.style_in = weight_norm(nn.Linear(input_size, hidden_size, bias=True))
self.input_size = input_size
self.dropout_prob = dropout_prob
def forward(self, labels, train, force_drop_ids=None):
use_dropout = self.dropout_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
labels = self.token_drop(labels, force_drop_ids)
else:
labels = self.style_in(labels)
embeddings = labels
return embeddings
class FinalLayer(nn.Module):
"""
The final layer of DiT.
"""
def __init__(self, hidden_size, patch_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = weight_norm(nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True))
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
)
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class DiT(torch.nn.Module):
def __init__(
self,
args
):
super(DiT, self).__init__()
self.time_as_token = args.DiT.time_as_token if hasattr(args.DiT, 'time_as_token') else False
self.style_as_token = args.DiT.style_as_token if hasattr(args.DiT, 'style_as_token') else False
self.uvit_skip_connection = args.DiT.uvit_skip_connection if hasattr(args.DiT, 'uvit_skip_connection') else False
model_args = ModelArgs(
block_size=16384,#args.DiT.block_size,
n_layer=args.DiT.depth,
n_head=args.DiT.num_heads,
dim=args.DiT.hidden_dim,
head_dim=args.DiT.hidden_dim // args.DiT.num_heads,
vocab_size=1024,
uvit_skip_connection=self.uvit_skip_connection,
time_as_token=self.time_as_token,
)
self.transformer = Transformer(model_args)
self.in_channels = args.DiT.in_channels
self.out_channels = args.DiT.in_channels
self.num_heads = args.DiT.num_heads
self.x_embedder = weight_norm(nn.Linear(args.DiT.in_channels, args.DiT.hidden_dim, bias=True))
self.content_type = args.DiT.content_type # 'discrete' or 'continuous'
self.content_codebook_size = args.DiT.content_codebook_size # for discrete content
self.content_dim = args.DiT.content_dim # for continuous content
self.cond_embedder = nn.Embedding(args.DiT.content_codebook_size, args.DiT.hidden_dim) # discrete content
self.cond_projection = nn.Linear(args.DiT.content_dim, args.DiT.hidden_dim, bias=True) # continuous content
self.is_causal = args.DiT.is_causal
self.t_embedder = TimestepEmbedder(args.DiT.hidden_dim)
input_pos = torch.arange(16384)
self.register_buffer("input_pos", input_pos)
self.final_layer_type = args.DiT.final_layer_type # mlp or wavenet
if self.final_layer_type == 'wavenet':
self.t_embedder2 = TimestepEmbedder(args.wavenet.hidden_dim)
self.conv1 = nn.Linear(args.DiT.hidden_dim, args.wavenet.hidden_dim)
self.conv2 = nn.Conv1d(args.wavenet.hidden_dim, args.DiT.in_channels, 1)
self.wavenet = WN(hidden_channels=args.wavenet.hidden_dim,
kernel_size=args.wavenet.kernel_size,
dilation_rate=args.wavenet.dilation_rate,
n_layers=args.wavenet.num_layers,
gin_channels=args.wavenet.hidden_dim,
p_dropout=args.wavenet.p_dropout,
causal=False)
self.final_layer = FinalLayer(args.wavenet.hidden_dim, 1, args.wavenet.hidden_dim)
self.res_projection = nn.Linear(args.DiT.hidden_dim,
args.wavenet.hidden_dim) # residual connection from tranformer output to final output
self.wavenet_style_condition = args.wavenet.style_condition
assert args.DiT.style_condition == args.wavenet.style_condition
else:
self.final_mlp = nn.Sequential(
nn.Linear(args.DiT.hidden_dim, args.DiT.hidden_dim),
nn.SiLU(),
nn.Linear(args.DiT.hidden_dim, args.DiT.in_channels),
)
self.transformer_style_condition = args.DiT.style_condition
self.class_dropout_prob = args.DiT.class_dropout_prob
self.content_mask_embedder = nn.Embedding(1, args.DiT.hidden_dim)
self.long_skip_connection = args.DiT.long_skip_connection
self.skip_linear = nn.Linear(args.DiT.hidden_dim + args.DiT.in_channels, args.DiT.hidden_dim)
self.cond_x_merge_linear = nn.Linear(args.DiT.hidden_dim + args.DiT.in_channels * 2 +
args.style_encoder.dim * self.transformer_style_condition * (not self.style_as_token),
args.DiT.hidden_dim)
if self.style_as_token:
self.style_in = nn.Linear(args.style_encoder.dim, args.DiT.hidden_dim)
def setup_caches(self, max_batch_size, max_seq_length):
self.transformer.setup_caches(max_batch_size, max_seq_length, use_kv_cache=False)
def forward(self, x, prompt_x, x_lens, t, style, cond, mask_content=False):
class_dropout = False
if self.training and torch.rand(1) < self.class_dropout_prob:
class_dropout = True
if not self.training and mask_content:
class_dropout = True
# cond_in_module = self.cond_embedder if self.content_type == 'discrete' else self.cond_projection
cond_in_module = self.cond_projection
B, _, T = x.size()
t1 = self.t_embedder(t) # (N, D)
cond = cond_in_module(cond)
x = x.transpose(1, 2)
prompt_x = prompt_x.transpose(1, 2)
x_in = torch.cat([x, prompt_x, cond], dim=-1)
if self.transformer_style_condition and not self.style_as_token:
x_in = torch.cat([x_in, style[:, None, :].repeat(1, T, 1)], dim=-1)
if class_dropout:
x_in[..., self.in_channels:] = x_in[..., self.in_channels:] * 0
x_in = self.cond_x_merge_linear(x_in) # (N, T, D)
if self.style_as_token:
style = self.style_in(style)
style = torch.zeros_like(style) if class_dropout else style
x_in = torch.cat([style.unsqueeze(1), x_in], dim=1)
if self.time_as_token:
x_in = torch.cat([t1.unsqueeze(1), x_in], dim=1)
x_mask = sequence_mask(x_lens + self.style_as_token + self.time_as_token).to(x.device).unsqueeze(1)
input_pos = self.input_pos[:x_in.size(1)] # (T,)
x_mask_expanded = x_mask[:, None, :].repeat(1, 1, x_in.size(1), 1) if not self.is_causal else None
x_res = self.transformer(x_in, t1.unsqueeze(1), input_pos, x_mask_expanded)
x_res = x_res[:, 1:] if self.time_as_token else x_res
x_res = x_res[:, 1:] if self.style_as_token else x_res
if self.long_skip_connection:
x_res = self.skip_linear(torch.cat([x_res, x], dim=-1))
if self.final_layer_type == 'wavenet':
x = self.conv1(x_res)
x = x.transpose(1, 2)
t2 = self.t_embedder2(t)
x = self.wavenet(x, x_mask, g=t2.unsqueeze(2)).transpose(1, 2) + self.res_projection(
x_res) # long residual connection
x = self.final_layer(x, t1).transpose(1, 2)
x = self.conv2(x)
else:
x = self.final_mlp(x_res)
x = x.transpose(1, 2)
return x |