File size: 22,967 Bytes
56a1295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
import torch
from torch import nn
import math

# from modules.torchscript_modules.gpt_fast_model import ModelArgs, Transformer
from modules.wavenet import WN
from modules.commons import sequence_mask

from torch.nn.utils import weight_norm

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass
from typing import Optional

import torch
import torch.nn as nn
from torch import Tensor
from torch.nn import functional as F


def find_multiple(n: int, k: int) -> int:
    if n % k == 0:
        return n
    return n + k - (n % k)

class AdaptiveLayerNorm(nn.Module):
    r"""Adaptive Layer Normalization"""

    def __init__(self, d_model, norm) -> None:
        super(AdaptiveLayerNorm, self).__init__()
        self.project_layer = nn.Linear(d_model, 2 * d_model)
        self.norm = norm
        self.d_model = d_model
        self.eps = self.norm.eps

    def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
        if embedding is None:
            return self.norm(input)
        weight, bias = torch.split(
            self.project_layer(embedding),
            split_size_or_sections=self.d_model,
            dim=-1,
        )
        return weight * self.norm(input) + bias


@dataclass
class ModelArgs:
    block_size: int = 2048
    vocab_size: int = 32000
    n_layer: int = 32
    n_head: int = 32
    dim: int = 4096
    intermediate_size: int = None
    n_local_heads: int = -1
    head_dim: int = 64
    rope_base: float = 10000
    norm_eps: float = 1e-5
    has_cross_attention: bool = False
    context_dim: int = 0
    uvit_skip_connection: bool = False
    time_as_token: bool = False

    def __post_init__(self):
        if self.n_local_heads == -1:
            self.n_local_heads = self.n_head
        if self.intermediate_size is None:
            hidden_dim = 4 * self.dim
            n_hidden = int(2 * hidden_dim / 3)
            self.intermediate_size = find_multiple(n_hidden, 256)
        # self.head_dim = self.dim // self.n_head

class Transformer(nn.Module):
    def __init__(self, config: ModelArgs) -> None:
        super().__init__()
        self.config = config

        self.layers = nn.ModuleList(TransformerBlock(config) for _ in range(config.n_layer))
        self.norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))

        self.freqs_cis: Optional[Tensor] = None
        self.mask_cache: Optional[Tensor] = None
        self.max_batch_size = -1
        self.max_seq_length = -1

    def setup_caches(self, max_batch_size, max_seq_length, use_kv_cache=False):
        if self.max_seq_length >= max_seq_length and self.max_batch_size >= max_batch_size:
            return
        head_dim = self.config.dim // self.config.n_head
        max_seq_length = find_multiple(max_seq_length, 8)
        self.max_seq_length = max_seq_length
        self.max_batch_size = max_batch_size
        dtype = self.norm.project_layer.weight.dtype
        device = self.norm.project_layer.weight.device

        self.freqs_cis = precompute_freqs_cis(self.config.block_size, self.config.head_dim,
                                              self.config.rope_base, dtype).to(device)
        self.causal_mask = torch.tril(torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool)).to(device)
        self.use_kv_cache = use_kv_cache
        self.uvit_skip_connection = self.config.uvit_skip_connection
        if self.uvit_skip_connection:
            self.layers_emit_skip = [i for i in range(self.config.n_layer) if i < self.config.n_layer // 2]
            self.layers_receive_skip = [i for i in range(self.config.n_layer) if i > self.config.n_layer // 2]
        else:
            self.layers_emit_skip = []
            self.layers_receive_skip = []

    def forward(self,

                x: Tensor,

                c: Tensor,

                input_pos: Optional[Tensor] = None,

                mask: Optional[Tensor] = None,

                context: Optional[Tensor] = None,

                context_input_pos: Optional[Tensor] = None,

                cross_attention_mask: Optional[Tensor] = None,

                ) -> Tensor:
        assert self.freqs_cis is not None, "Caches must be initialized first"
        if mask is None: # in case of non-causal model
            if not self.training and self.use_kv_cache:
                mask = self.causal_mask[None, None, input_pos]
            else:
                mask = self.causal_mask[None, None, input_pos]
                mask = mask[..., input_pos]
        freqs_cis = self.freqs_cis[input_pos]
        if context is not None:
            context_freqs_cis = self.freqs_cis[context_input_pos]
        else:
            context_freqs_cis = None
        skip_in_x_list = []
        for i, layer in enumerate(self.layers):
            if self.uvit_skip_connection and i in self.layers_receive_skip:
                skip_in_x = skip_in_x_list.pop(-1)
            else:
                skip_in_x = None
            x = layer(x, c, input_pos, freqs_cis, mask, context, context_freqs_cis, cross_attention_mask, skip_in_x)
            if self.uvit_skip_connection and i in self.layers_emit_skip:
                skip_in_x_list.append(x)
        x = self.norm(x, c)
        return x

    @classmethod
    def from_name(cls, name: str):
        return cls(ModelArgs.from_name(name))


class TransformerBlock(nn.Module):
    def __init__(self, config: ModelArgs) -> None:
        super().__init__()
        self.attention = Attention(config)
        self.feed_forward = FeedForward(config)
        self.ffn_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
        self.attention_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))

        if config.has_cross_attention:
            self.has_cross_attention = True
            self.cross_attention = Attention(config, is_cross_attention=True)
            self.cross_attention_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
        else:
            self.has_cross_attention = False

        if config.uvit_skip_connection:
            self.skip_in_linear = nn.Linear(config.dim * 2, config.dim)
            self.uvit_skip_connection = True
        else:
            self.uvit_skip_connection = False

        self.time_as_token = config.time_as_token

    def forward(self,

                x: Tensor,

                c: Tensor,

                input_pos: Tensor,

                freqs_cis: Tensor,

                mask: Tensor,

                context: Optional[Tensor] = None,

                context_freqs_cis: Optional[Tensor] = None,

                cross_attention_mask: Optional[Tensor] = None,

                skip_in_x: Optional[Tensor] = None,

                ) -> Tensor:
        c = None if self.time_as_token else c
        if self.uvit_skip_connection and skip_in_x is not None:
            x = self.skip_in_linear(torch.cat([x, skip_in_x], dim=-1))
        h = x + self.attention(self.attention_norm(x, c), freqs_cis, mask, input_pos)
        if self.has_cross_attention:
            h = h + self.cross_attention(self.cross_attention_norm(h, c), freqs_cis, cross_attention_mask, input_pos, context, context_freqs_cis)
        out = h + self.feed_forward(self.ffn_norm(h, c))
        return out


class Attention(nn.Module):
    def __init__(self, config: ModelArgs, is_cross_attention: bool = False):
        super().__init__()
        assert config.dim % config.n_head == 0

        total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim
        # key, query, value projections for all heads, but in a batch
        if is_cross_attention:
            self.wq = nn.Linear(config.dim, config.n_head * config.head_dim, bias=False)
            self.wkv = nn.Linear(config.context_dim, 2 * config.n_local_heads * config.head_dim, bias=False)
        else:
            self.wqkv = nn.Linear(config.dim, total_head_dim, bias=False)
        self.wo = nn.Linear(config.head_dim * config.n_head, config.dim, bias=False)
        self.kv_cache = None

        self.n_head = config.n_head
        self.head_dim = config.head_dim
        self.n_local_heads = config.n_local_heads
        self.dim = config.dim
        # self._register_load_state_dict_pre_hook(self.load_hook)

    # def load_hook(self, state_dict, prefix, *args):
    #     if prefix + "wq.weight" in state_dict:
    #         wq = state_dict.pop(prefix + "wq.weight")
    #         wk = state_dict.pop(prefix + "wk.weight")
    #         wv = state_dict.pop(prefix + "wv.weight")
    #         state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv])

    def forward(self,

                x: Tensor,

                freqs_cis: Tensor,

                mask: Tensor,

                input_pos: Optional[Tensor] = None,

                context: Optional[Tensor] = None,

                context_freqs_cis: Optional[Tensor] = None,

                ) -> Tensor:
        bsz, seqlen, _ = x.shape

        kv_size = self.n_local_heads * self.head_dim
        if context is None:
            q, k, v = self.wqkv(x).split([kv_size, kv_size, kv_size], dim=-1)
            context_seqlen = seqlen
        else:
            q = self.wq(x)
            k, v = self.wkv(context).split([kv_size, kv_size], dim=-1)
            context_seqlen = context.shape[1]

        q = q.view(bsz, seqlen, self.n_head, self.head_dim)
        k = k.view(bsz, context_seqlen, self.n_local_heads, self.head_dim)
        v = v.view(bsz, context_seqlen, self.n_local_heads, self.head_dim)

        q = apply_rotary_emb(q, freqs_cis)
        k = apply_rotary_emb(k, context_freqs_cis if context_freqs_cis is not None else freqs_cis)

        q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))

        if self.kv_cache is not None:
            k, v = self.kv_cache.update(input_pos, k, v)

        k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
        v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
        y = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0)

        y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.head_dim * self.n_head)

        y = self.wo(y)
        return y


class FeedForward(nn.Module):
    def __init__(self, config: ModelArgs) -> None:
        super().__init__()
        self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False)
        self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False)
        self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False)

    def forward(self, x: Tensor) -> Tensor:
        return self.w2(F.silu(self.w1(x)) * self.w3(x))


class RMSNorm(nn.Module):
    def __init__(self, dim: int, eps: float = 1e-5):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def _norm(self, x):
        return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)

    def forward(self, x: Tensor) -> Tensor:
        output = self._norm(x.float()).type_as(x)
        return output * self.weight


def precompute_freqs_cis(

        seq_len: int, n_elem: int, base: int = 10000,

        dtype: torch.dtype = torch.bfloat16

) -> Tensor:
    freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem))
    t = torch.arange(seq_len, device=freqs.device)
    freqs = torch.outer(t, freqs)
    freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
    cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
    return cache.to(dtype=dtype)


def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor:
    xshaped = x.float().reshape(*x.shape[:-1], -1, 2)
    freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2)
    x_out2 = torch.stack(
        [
            xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
            xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
        ],
        -1,
    )

    x_out2 = x_out2.flatten(3)
    return x_out2.type_as(x)


def modulate(x, shift, scale):
    return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)


#################################################################################
#               Embedding Layers for Timesteps and Class Labels                 #
#################################################################################

class TimestepEmbedder(nn.Module):
    """

    Embeds scalar timesteps into vector representations.

    """
    def __init__(self, hidden_size, frequency_embedding_size=256):
        super().__init__()
        self.mlp = nn.Sequential(
            nn.Linear(frequency_embedding_size, hidden_size, bias=True),
            nn.SiLU(),
            nn.Linear(hidden_size, hidden_size, bias=True),
        )
        self.frequency_embedding_size = frequency_embedding_size
        self.max_period = 10000
        self.scale = 1000

        half = frequency_embedding_size // 2
        freqs = torch.exp(
            -math.log(self.max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
        )
        self.register_buffer("freqs", freqs)

    def timestep_embedding(self, t):
        """

        Create sinusoidal timestep embeddings.

        :param t: a 1-D Tensor of N indices, one per batch element.

                          These may be fractional.

        :param dim: the dimension of the output.

        :param max_period: controls the minimum frequency of the embeddings.

        :return: an (N, D) Tensor of positional embeddings.

        """
        # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py

        args = self.scale * t[:, None].float() * self.freqs[None]
        embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
        if self.frequency_embedding_size % 2:
            embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
        return embedding

    def forward(self, t):
        t_freq = self.timestep_embedding(t)
        t_emb = self.mlp(t_freq)
        return t_emb


class StyleEmbedder(nn.Module):
    """

    Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.

    """
    def __init__(self, input_size, hidden_size, dropout_prob):
        super().__init__()
        use_cfg_embedding = dropout_prob > 0
        self.embedding_table = nn.Embedding(int(use_cfg_embedding), hidden_size)
        self.style_in = weight_norm(nn.Linear(input_size, hidden_size, bias=True))
        self.input_size = input_size
        self.dropout_prob = dropout_prob

    def forward(self, labels, train, force_drop_ids=None):
        use_dropout = self.dropout_prob > 0
        if (train and use_dropout) or (force_drop_ids is not None):
            labels = self.token_drop(labels, force_drop_ids)
        else:
            labels = self.style_in(labels)
        embeddings = labels
        return embeddings

class FinalLayer(nn.Module):
    """

    The final layer of DiT.

    """
    def __init__(self, hidden_size, patch_size, out_channels):
        super().__init__()
        self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.linear = weight_norm(nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True))
        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(),
            nn.Linear(hidden_size, 2 * hidden_size, bias=True)
        )

    def forward(self, x, c):
        shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
        x = modulate(self.norm_final(x), shift, scale)
        x = self.linear(x)
        return x

class DiT(torch.nn.Module):
    def __init__(

        self,

        args

    ):
        super(DiT, self).__init__()
        self.time_as_token = args.DiT.time_as_token if hasattr(args.DiT, 'time_as_token') else False
        self.style_as_token = args.DiT.style_as_token if hasattr(args.DiT, 'style_as_token') else False
        self.uvit_skip_connection = args.DiT.uvit_skip_connection if hasattr(args.DiT, 'uvit_skip_connection') else False
        model_args = ModelArgs(
            block_size=16384,#args.DiT.block_size,
            n_layer=args.DiT.depth,
            n_head=args.DiT.num_heads,
            dim=args.DiT.hidden_dim,
            head_dim=args.DiT.hidden_dim // args.DiT.num_heads,
            vocab_size=1024,
            uvit_skip_connection=self.uvit_skip_connection,
            time_as_token=self.time_as_token,
        )
        self.transformer = Transformer(model_args)
        self.in_channels = args.DiT.in_channels
        self.out_channels = args.DiT.in_channels
        self.num_heads = args.DiT.num_heads

        self.x_embedder = weight_norm(nn.Linear(args.DiT.in_channels, args.DiT.hidden_dim, bias=True))

        self.content_type = args.DiT.content_type  # 'discrete' or 'continuous'
        self.content_codebook_size = args.DiT.content_codebook_size # for discrete content
        self.content_dim = args.DiT.content_dim # for continuous content
        self.cond_embedder = nn.Embedding(args.DiT.content_codebook_size, args.DiT.hidden_dim)  # discrete content
        self.cond_projection = nn.Linear(args.DiT.content_dim, args.DiT.hidden_dim, bias=True) # continuous content

        self.is_causal = args.DiT.is_causal

        self.t_embedder = TimestepEmbedder(args.DiT.hidden_dim)

        input_pos = torch.arange(16384)
        self.register_buffer("input_pos", input_pos)

        self.final_layer_type = args.DiT.final_layer_type  # mlp or wavenet
        if self.final_layer_type == 'wavenet':
            self.t_embedder2 = TimestepEmbedder(args.wavenet.hidden_dim)
            self.conv1 = nn.Linear(args.DiT.hidden_dim, args.wavenet.hidden_dim)
            self.conv2 = nn.Conv1d(args.wavenet.hidden_dim, args.DiT.in_channels, 1)
            self.wavenet = WN(hidden_channels=args.wavenet.hidden_dim,
                              kernel_size=args.wavenet.kernel_size,
                              dilation_rate=args.wavenet.dilation_rate,
                              n_layers=args.wavenet.num_layers,
                              gin_channels=args.wavenet.hidden_dim,
                              p_dropout=args.wavenet.p_dropout,
                              causal=False)
            self.final_layer = FinalLayer(args.wavenet.hidden_dim, 1, args.wavenet.hidden_dim)
            self.res_projection = nn.Linear(args.DiT.hidden_dim,
                                            args.wavenet.hidden_dim)  # residual connection from tranformer output to final output
            self.wavenet_style_condition = args.wavenet.style_condition
            assert args.DiT.style_condition == args.wavenet.style_condition
        else:
            self.final_mlp = nn.Sequential(
                    nn.Linear(args.DiT.hidden_dim, args.DiT.hidden_dim),
                    nn.SiLU(),
                    nn.Linear(args.DiT.hidden_dim, args.DiT.in_channels),
            )
        self.transformer_style_condition = args.DiT.style_condition


        self.class_dropout_prob = args.DiT.class_dropout_prob
        self.content_mask_embedder = nn.Embedding(1, args.DiT.hidden_dim)

        self.long_skip_connection = args.DiT.long_skip_connection
        self.skip_linear = nn.Linear(args.DiT.hidden_dim + args.DiT.in_channels, args.DiT.hidden_dim)

        self.cond_x_merge_linear = nn.Linear(args.DiT.hidden_dim + args.DiT.in_channels * 2 +
                                             args.style_encoder.dim * self.transformer_style_condition * (not self.style_as_token),
                                             args.DiT.hidden_dim)
        if self.style_as_token:
            self.style_in = nn.Linear(args.style_encoder.dim, args.DiT.hidden_dim)

    def setup_caches(self, max_batch_size, max_seq_length):
        self.transformer.setup_caches(max_batch_size, max_seq_length, use_kv_cache=False)
    def forward(self, x, prompt_x, x_lens, t, style, cond, mask_content=False):
        class_dropout = False
        if self.training and torch.rand(1) < self.class_dropout_prob:
            class_dropout = True
        if not self.training and mask_content:
            class_dropout = True
        # cond_in_module = self.cond_embedder if self.content_type == 'discrete' else self.cond_projection
        cond_in_module = self.cond_projection

        B, _, T = x.size()


        t1 = self.t_embedder(t)  # (N, D)

        cond = cond_in_module(cond)

        x = x.transpose(1, 2)
        prompt_x = prompt_x.transpose(1, 2)

        x_in = torch.cat([x, prompt_x, cond], dim=-1)
        if self.transformer_style_condition and not self.style_as_token:
            x_in = torch.cat([x_in, style[:, None, :].repeat(1, T, 1)], dim=-1)
        if class_dropout:
            x_in[..., self.in_channels:] = x_in[..., self.in_channels:] * 0
        x_in = self.cond_x_merge_linear(x_in)  # (N, T, D)

        if self.style_as_token:
            style = self.style_in(style)
            style = torch.zeros_like(style) if class_dropout else style
            x_in = torch.cat([style.unsqueeze(1), x_in], dim=1)
        if self.time_as_token:
            x_in = torch.cat([t1.unsqueeze(1), x_in], dim=1)
        x_mask = sequence_mask(x_lens + self.style_as_token + self.time_as_token).to(x.device).unsqueeze(1)
        input_pos = self.input_pos[:x_in.size(1)]  # (T,)
        x_mask_expanded = x_mask[:, None, :].repeat(1, 1, x_in.size(1), 1) if not self.is_causal else None
        x_res = self.transformer(x_in, t1.unsqueeze(1), input_pos, x_mask_expanded)
        x_res = x_res[:, 1:] if self.time_as_token else x_res
        x_res = x_res[:, 1:] if self.style_as_token else x_res
        if self.long_skip_connection:
            x_res = self.skip_linear(torch.cat([x_res, x], dim=-1))
        if self.final_layer_type == 'wavenet':
            x = self.conv1(x_res)
            x = x.transpose(1, 2)
            t2 = self.t_embedder2(t)
            x = self.wavenet(x, x_mask, g=t2.unsqueeze(2)).transpose(1, 2) + self.res_projection(
                x_res)  # long residual connection
            x = self.final_layer(x, t1).transpose(1, 2)
            x = self.conv2(x)
        else:
            x = self.final_mlp(x_res)
            x = x.transpose(1, 2)
        return x