Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,739 Bytes
63edc9f 56a1295 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import spaces
import gradio as gr
import torch
import yaml
import argparse
from seed_vc_wrapper import SeedVCWrapper
from modules.v2.vc_wrapper import VoiceConversionWrapper
# Set up device and torch configurations
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.triton.unique_kernel_names = True
if hasattr(torch._inductor.config, "fx_graph_cache"):
# Experimental feature to reduce compilation times, will be on by default in future
torch._inductor.config.fx_graph_cache = True
dtype = torch.float16
# Global variables to store model instances
vc_wrapper_v1 = None
vc_wrapper_v2 = None
def load_v2_models(args):
from hydra.utils import instantiate
from omegaconf import DictConfig
cfg = DictConfig(yaml.safe_load(open("configs/v2/vc_wrapper.yaml", "r")))
vc_wrapper = instantiate(cfg)
vc_wrapper.load_checkpoints()
vc_wrapper.to(device)
vc_wrapper.eval()
vc_wrapper.setup_ar_caches(max_batch_size=1, max_seq_len=4096, dtype=dtype, device=device)
if args.compile:
vc_wrapper.compile_ar()
# vc_wrapper.compile_cfm()
return vc_wrapper
@spaces.GPU
def convert_voice_v1_wrapper(source_audio_path, target_audio_path, diffusion_steps=10,
length_adjust=1.0, inference_cfg_rate=0.7, f0_condition=False,
auto_f0_adjust=True, pitch_shift=0, stream_output=True):
"""
Wrapper function for vc_wrapper.convert_voice that can be decorated with @spaces.GPU
"""
global vc_wrapper_v1
if vc_wrapper_v1 is None:
vc_wrapper_v1 = SeedVCWrapper()
# Use yield from to properly handle the generator
yield from vc_wrapper_v1.convert_voice(
source=source_audio_path,
target=target_audio_path,
diffusion_steps=diffusion_steps,
length_adjust=length_adjust,
inference_cfg_rate=inference_cfg_rate,
f0_condition=f0_condition,
auto_f0_adjust=auto_f0_adjust,
pitch_shift=pitch_shift,
stream_output=stream_output
)
@spaces.GPU
def convert_voice_v2_wrapper(source_audio_path, target_audio_path, diffusion_steps=30,
length_adjust=1.0, intelligebility_cfg_rate=0.7, similarity_cfg_rate=0.7,
top_p=0.7, temperature=0.7, repetition_penalty=1.5,
convert_style=False, anonymization_only=False, stream_output=True):
"""
Wrapper function for vc_wrapper.convert_voice_with_streaming that can be decorated with @spaces.GPU
"""
global vc_wrapper_v2
if vc_wrapper_v2 is None:
# Initialize with default arguments
parser = argparse.ArgumentParser()
parser.add_argument("--compile", type=bool, default=True)
args = parser.parse_args([])
vc_wrapper_v2 = load_v2_models(args)
# Use yield from to properly handle the generator
yield from vc_wrapper_v2.convert_voice_with_streaming(
source_audio_path=source_audio_path,
target_audio_path=target_audio_path,
diffusion_steps=diffusion_steps,
length_adjust=length_adjust,
intelligebility_cfg_rate=intelligebility_cfg_rate,
similarity_cfg_rate=similarity_cfg_rate,
top_p=top_p,
temperature=temperature,
repetition_penalty=repetition_penalty,
convert_style=convert_style,
anonymization_only=anonymization_only,
device=device,
dtype=dtype,
stream_output=stream_output
)
def create_v1_interface():
# Set up Gradio interface
description = (
"Zero-shot voice conversion with in-context learning. For local deployment please check [GitHub repository](https://github.com/Plachtaa/seed-vc) "
"for details and updates.<br>Note that any reference audio will be forcefully clipped to 25s if beyond this length.<br> "
"If total duration of source and reference audio exceeds 30s, source audio will be processed in chunks.<br> "
"无需训练的 zero-shot 语音/歌声转换模型,若需本地部署查看[GitHub页面](https://github.com/Plachtaa/seed-vc)<br>"
"请注意,参考音频若超过 25 秒,则会被自动裁剪至此长度。<br>若源音频和参考音频的总时长超过 30 秒,源音频将被分段处理。")
inputs = [
gr.Audio(type="filepath", label="Source Audio / 源音频"),
gr.Audio(type="filepath", label="Reference Audio / 参考音频"),
gr.Slider(minimum=1, maximum=200, value=10, step=1, label="Diffusion Steps / 扩散步数",
info="10 by default, 50~100 for best quality / 默认为 10,50~100 为最佳质量"),
gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust / 长度调整",
info="<1.0 for speed-up speech, >1.0 for slow-down speech / <1.0 加速语速,>1.0 减慢语速"),
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Inference CFG Rate",
info="has subtle influence / 有微小影响"),
gr.Checkbox(label="Use F0 conditioned model / 启用F0输入", value=False,
info="Must set to true for singing voice conversion / 歌声转换时必须勾选"),
gr.Checkbox(label="Auto F0 adjust / 自动F0调整", value=True,
info="Roughly adjust F0 to match target voice. Only works when F0 conditioned model is used. / 粗略调整 F0 以匹配目标音色,仅在勾选 '启用F0输入' 时生效"),
gr.Slider(label='Pitch shift / 音调变换', minimum=-24, maximum=24, step=1, value=0,
info="Pitch shift in semitones, only works when F0 conditioned model is used / 半音数的音高变换,仅在勾选 '启用F0输入' 时生效"),
]
examples = [
["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 25, 1.0, 0.7, False, True, 0],
["examples/source/jay_0.wav", "examples/reference/azuma_0.wav", 25, 1.0, 0.7, True, True, 0],
["examples/source/Wiz Khalifa,Charlie Puth - See You Again [vocals]_[cut_28sec].wav",
"examples/reference/teio_0.wav", 100, 1.0, 0.7, True, False, 0],
["examples/source/TECHNOPOLIS - 2085 [vocals]_[cut_14sec].wav",
"examples/reference/trump_0.wav", 50, 1.0, 0.7, True, False, -12],
]
outputs = [
gr.Audio(label="Stream Output Audio / 流式输出", streaming=True, format='mp3'),
gr.Audio(label="Full Output Audio / 完整输出", streaming=False, format='wav')
]
return gr.Interface(
fn=convert_voice_v1_wrapper,
description=description,
inputs=inputs,
outputs=outputs,
title="Seed Voice Conversion V1 (Voice & Singing Voice Conversion)",
examples=examples,
cache_examples=False,
)
def create_v2_interface(vc_wrapper):
# Set up Gradio interface
description = (
"Zero-shot voice/style conversion with in-context learning. For local deployment please check [GitHub repository](https://github.com/Plachtaa/seed-vc) "
"for details and updates.<br>Note that any reference audio will be forcefully clipped to 25s if beyond this length.<br> "
"If total duration of source and reference audio exceeds 30s, source audio will be processed in chunks.<br> "
"Please click the 'convert style/emotion/accent' checkbox to convert the style, emotion, or accent of the source audio, or else only timbre conversion will be performed.<br> "
"Click the 'anonymization only' checkbox will ignore reference audio but convert source to an 'average voice' determined by model itself.<br> "
"无需训练的 zero-shot 语音/口音转换模型,若需本地部署查看[GitHub页面](https://github.com/Plachtaa/seed-vc)<br>"
"请注意,参考音频若超过 25 秒,则会被自动裁剪至此长度。<br>若源音频和参考音频的总时长超过 30 秒,源音频将被分段处理。"
"<br>请勾选 'convert style/emotion/accent' 以转换源音频的风格、情感或口音,否则仅执行音色转换。<br>"
"勾选 'anonymization only' 会无视参考音频而将源音频转换为某种由模型自身决定的 '平均音色'。<br>"
"Credits to [Vevo](https://github.com/open-mmlab/Amphion/tree/main/models/vc/vevo)"
)
inputs = [
gr.Audio(type="filepath", label="Source Audio / 源音频"),
gr.Audio(type="filepath", label="Reference Audio / 参考音频"),
gr.Slider(minimum=1, maximum=200, value=30, step=1, label="Diffusion Steps / 扩散步数",
info="30 by default, 50~100 for best quality / 默认为 30,50~100 为最佳质量"),
gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust / 长度调整",
info="<1.0 for speed-up speech, >1.0 for slow-down speech / <1.0 加速语速,>1.0 减慢语速"),
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.0, label="Intelligibility CFG Rate",
info="controls pronunciation intelligibility / 控制发音清晰度"),
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Similarity CFG Rate",
info="controls similarity to reference audio / 控制与参考音频的相似度"),
gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.9, label="Top-p",
info="AR model sampling top P"),
gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=1.0, label="Temperature",
info="AR model sampling temperature"),
gr.Slider(minimum=1.0, maximum=3.0, step=0.1, value=1.0, label="Repetition Penalty",
info="AR model sampling repetition penalty"),
gr.Checkbox(label="convert style/emotion/accent", value=False),
gr.Checkbox(label="anonymization only", value=False),
]
examples = [
["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 25, 1.0, 0.0, 0.7, 0.9, 1.0, 1.0, False,
False],
["examples/source/jay_0.wav", "examples/reference/azuma_0.wav", 25, 1.0, 0.0, 0.7, 0.9, 1.0, 1.0, False, False],
]
outputs = [
gr.Audio(label="Stream Output Audio / 流式输出", streaming=True, format='mp3'),
gr.Audio(label="Full Output Audio / 完整输出", streaming=False, format='wav')
]
return gr.Interface(
fn=convert_voice_v2_wrapper,
description=description,
inputs=inputs,
outputs=outputs,
title="Seed Voice Conversion V2 (Voice & Style Conversion)",
examples=examples,
cache_examples=False,
)
def main(args):
# Load V2 models
vc_wrapper_v2 = load_v2_models(args)
# Create interfaces
v1_interface = create_v1_interface()
v2_interface = create_v2_interface(vc_wrapper_v2)
# Create tabs
with gr.Blocks(title="Seed Voice Conversion") as demo:
gr.Markdown("# Seed Voice Conversion")
gr.Markdown("Choose between V1 (Voice & Singing Voice Conversion) or V2 (Voice & Style Conversion)")
with gr.Tabs():
with gr.TabItem("V2 - Voice & Style Conversion"):
v2_interface.render()
with gr.TabItem("V1 - Voice & Singing Voice Conversion"):
v1_interface.render()
# Launch the combined interface
demo.launch()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--compile", type=bool, default=True)
args = parser.parse_args()
main(args) |