GraspAnything / models /grasp_mods.py
Plachta's picture
Update models/grasp_mods.py
76ce233 verified
raw
history blame
17.7 kB
"""
Add additional grasp decoder for Segment Anything model.
The structure should follow the grasp decoder structure in GraspDETR.
"""
import torch
import torch.nn as nn
from transformers.models.detr.configuration_detr import DetrConfig
from transformers.models.detr.modeling_detr import DetrHungarianMatcher, DetrLoss, DetrSegmentationOutput, DetrDecoder, sigmoid_focal_loss, dice_loss
from typing import Any, Dict, List, Tuple
from transformers.models.detr.modeling_detr import generalized_box_iou
from transformers.image_transforms import center_to_corners_format
from scipy.optimize import linear_sum_assignment
def modify_matcher_forward(self):
@torch.no_grad()
def matcher_forward(outputs, targets):
batch_size, num_queries = outputs["logits"].shape[:2]
# We flatten to compute the cost matrices in a batch
out_prob = outputs["logits"].flatten(0, 1).softmax(-1) # [batch_size * num_queries, num_classes]
out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4]
# Also concat the target labels and boxes
target_ids = torch.cat([v["class_labels"] for v in targets])
target_bbox = torch.cat([v["boxes"] for v in targets])
# Compute the classification cost. Contrary to the loss, we don't use the NLL,
# but approximate it in 1 - proba[target class].
# The 1 is a constant that doesn't change the matching, it can be ommitted.
class_cost = -out_prob[:, target_ids]
# Compute the L1 cost between boxes
bbox_cost = torch.cdist(out_bbox, target_bbox, p=1)
# Compute the giou cost between boxes
giou_cost = -generalized_box_iou(center_to_corners_format(out_bbox[:, :4]), center_to_corners_format(target_bbox[:, :4]))
# Final cost matrix
cost_matrix = self.bbox_cost * bbox_cost + self.class_cost * class_cost + self.giou_cost * giou_cost
cost_matrix = cost_matrix.view(batch_size, num_queries, -1).cpu()
sizes = [len(v["boxes"]) for v in targets]
indices = [linear_sum_assignment(c[i]) for i, c in enumerate(cost_matrix.split(sizes, -1))]
return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]
return matcher_forward
def modify_grasp_loss_forward(self):
def modified_loss_labels(outputs, targets, indices, num_boxes):
"""
Classification loss (NLL) targets dicts must contain the key "class_labels" containing a tensor of dim
[nb_target_boxes]
"""
num_classes = 1 # model v9 always use class agnostic grasp
if "logits" not in outputs:
raise KeyError("No logits were found in the outputs")
source_logits = outputs["logits"]
idx = self._get_source_permutation_idx(indices)
target_classes_o = torch.cat([t["class_labels"][J] for t, (_, J) in zip(targets, indices)])
target_classes = torch.full(
source_logits.shape[:2], num_classes, dtype=torch.int64, device=source_logits.device
)
target_classes[idx] = target_classes_o
loss_ce = nn.functional.cross_entropy(source_logits.transpose(1, 2), target_classes)
losses = {"loss_ce": loss_ce}
return losses
def modified_loss_boxes(outputs, targets, indices, num_boxes, ignore_wh=False):
if "pred_boxes" not in outputs:
raise KeyError("No predicted boxes found in outputs")
idx = self._get_source_permutation_idx(indices)
source_boxes = outputs["pred_boxes"][idx]
target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0)
if not ignore_wh:
loss_bbox = nn.functional.l1_loss(source_boxes, target_boxes, reduction="none")
else:
source_xytheta = source_boxes[:, [0, 1, 4]]
target_xytheta = target_boxes[:, [0, 1, 4]]
loss_bbox = nn.functional.l1_loss(source_xytheta, target_xytheta, reduction="none") * 5 / 3
losses = {}
losses["loss_bbox"] = loss_bbox.sum() / num_boxes
if not ignore_wh:
loss_giou = 1 - torch.diag(
generalized_box_iou(center_to_corners_format(source_boxes[:, :4]), center_to_corners_format(target_boxes[:, :4]))
)
else:
source_boxes[:, -2:] = target_boxes[:, -2:].clone()
source_corners = center_to_corners_format(source_boxes[:, :4])
target_corners = center_to_corners_format(target_boxes[:, :4])
loss_giou = 1 - torch.diag(generalized_box_iou(source_corners, target_corners))
losses["loss_giou"] = loss_giou.sum() / num_boxes
return losses
def modified_forward(outputs, targets, ignore_wh=False):
"""
This performs the loss computation.
Args:
outputs (`dict`, *optional*):
Dictionary of tensors, see the output specification of the model for the format.
targets (`List[dict]`, *optional*):
List of dicts, such that `len(targets) == batch_size`. The expected keys in each dict depends on the
losses applied, see each loss' doc.
"""
outputs_without_aux = {k: v for k, v in outputs.items() if k != "auxiliary_outputs"}
# Retrieve the matching between the outputs of the last layer and the targets
indices = self.matcher(outputs_without_aux, targets)
# Compute the average number of target boxes across all nodes, for normalization purposes
num_boxes = sum(len(t["class_labels"]) for t in targets)
num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device)
# (Niels): comment out function below, distributed training to be added
# if is_dist_avail_and_initialized():
# torch.distributed.all_reduce(num_boxes)
# (Niels) in original implementation, num_boxes is divided by get_world_size()
num_boxes = torch.clamp(num_boxes, min=1).item()
# Compute all the requested losses
losses = {}
losses.update(self.loss_labels(outputs, targets, indices, num_boxes))
losses.update(self.loss_boxes(outputs, targets, indices, num_boxes, ignore_wh))
return losses
return modified_loss_labels, modified_loss_boxes, modified_forward
def modify_forward(self):
"""
Modify the following methods to make SAM perform grasp detection after segmentation:
1. Add a parallel decoder for grasping detection: 1(+1) classes, 5 values to regress (bbox & rotation)
Returns:
Modified model
"""
# 1. We instantiate a new module in self.base_model, as another decoder
self.grasp_decoder_config = DetrConfig()
self.grasp_decoder = DetrDecoder(self.grasp_decoder_config).to(self.device)
self.grasp_query_position_embeddings = nn.Embedding(20, 256).to(self.device)
# 2. Base model forward method is not directly used, no modification needs to be done
# self.detr.model.forward = modify_base_model_forward(self.detr.model)
# 3. Add additional classification head & bbox regression head for grasp_decoder output
self.grasp_predictor = torch.nn.Sequential(
torch.nn.Linear(256, 256),
torch.nn.Linear(256, 256),
torch.nn.Linear(256, 5)
).to(self.device)
self.grasp_label_classifier = torch.nn.Linear(256, 2).to(self.device)
# 4. Add positional embedding
# name it as grasp_img_pos_embed to avoid name conflict
class ImagePosEmbed(nn.Module):
def __init__(self, img_size=64, hidden_dim=256):
super().__init__()
self.pos_embed = nn.Parameter(
torch.randn(1, img_size, img_size, hidden_dim)
)
def forward(self, x):
return x + self.pos_embed
self.grasp_img_pos_embed = ImagePosEmbed().to(self.device)
def modified_forward(
batched_input: List[Dict[str, Any]],
multimask_output: bool,
):
input_images = torch.stack([x["image"] for x in batched_input], dim=0)
image_embeddings = self.image_encoder(input_images)
batch_size = len(batched_input)
outputs = []
srcs = []
for image_record, curr_embedding in zip(batched_input, image_embeddings):
if "point_coords" in image_record:
points = (image_record["point_coords"], image_record["point_labels"])
else:
points = None
sparse_embeddings, dense_embeddings = self.prompt_encoder(
points=points,
boxes=image_record.get("boxes", None),
masks=image_record.get("mask_inputs", None),
)
low_res_masks, iou_predictions, src = self.mask_decoder(
image_embeddings=curr_embedding.unsqueeze(0),
image_pe=self.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=multimask_output,
)
outputs.append(
{
"iou_predictions": iou_predictions,
"low_res_logits": low_res_masks,
}
)
srcs.append(src[0])
srcs = torch.stack(srcs, dim=0)
# forward grasp decoder here
# 1. Get encoder hidden states
grasp_encoder_hidden_states = self.grasp_img_pos_embed(srcs.permute(0, 2, 3, 1))
# 2. Get query embeddings
grasp_query_pe = self.grasp_query_position_embeddings(torch.arange(20).to(self.device))
# repeat to batchsize
grasp_query_pe = grasp_query_pe.repeat(len(batched_input), 1, 1)
pixel_masks = torch.cat([batched_input[i]['pixel_mask'] for i in range(len(batched_input))], dim=0)
downsampled_pixel_masks = nn.functional.interpolate(pixel_masks.unsqueeze(1).float(), size=(64, 64), mode='nearest').squeeze(1).bool()
downsampled_pixel_masks = downsampled_pixel_masks.view(batch_size, 64*64).contiguous()
grasp_encoder_hidden_states = grasp_encoder_hidden_states.view(batch_size, 64*64, 256).contiguous()
grasp_decoder_outputs = self.grasp_decoder(
inputs_embeds=torch.zeros_like(grasp_query_pe),
attention_mask=None,
position_embeddings=torch.zeros_like(grasp_encoder_hidden_states),
query_position_embeddings=grasp_query_pe,
encoder_hidden_states=grasp_encoder_hidden_states,
encoder_attention_mask=downsampled_pixel_masks,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
)
grasp_sequence_output = grasp_decoder_outputs[0]
grasp_logits = self.grasp_label_classifier(grasp_sequence_output)
pred_grasps = self.grasp_predictor(grasp_sequence_output).sigmoid()
# 3. Calculate loss
loss, loss_dict = 0, {}
if "grasp_labels" in batched_input[0]:
config = self.grasp_decoder_config
grasp_labels = [{
"class_labels": torch.zeros([len(x["grasp_labels"])], dtype=torch.long).to(self.device),
"boxes": x["grasp_labels"],
} for x in batched_input]
# First: create the matcher
matcher = DetrHungarianMatcher(
class_cost=config.class_cost, bbox_cost=config.bbox_cost, giou_cost=config.giou_cost
)
matcher.forward = modify_matcher_forward(matcher)
# Second: create the criterion
losses = ["labels", "boxes"]
criterion = DetrLoss(
matcher=matcher,
num_classes=config.num_labels,
eos_coef=config.eos_coefficient,
losses=losses,
)
criterion.loss_labels, criterion.loss_boxes, criterion.forward = modify_grasp_loss_forward(criterion)
criterion.to(self.device)
# Third: compute the losses, based on outputs and labels
outputs_loss = {}
outputs_loss["logits"] = grasp_logits
outputs_loss["pred_boxes"] = pred_grasps
grasp_loss_dict = criterion(outputs_loss, grasp_labels, ignore_wh=batched_input[0].get("ignore_wh", False))
# Fourth: compute total loss, as a weighted sum of the various losses
weight_dict = {"loss_ce": 1, "loss_bbox": config.bbox_loss_coefficient}
weight_dict["loss_giou"] = config.giou_loss_coefficient
if config.auxiliary_loss:
aux_weight_dict = {}
for i in range(config.decoder_layers - 1):
aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
weight_dict.update(aux_weight_dict)
grasp_loss = sum(grasp_loss_dict[k] * weight_dict[k] for k in grasp_loss_dict.keys() if k in weight_dict)
# merge grasp branch loss into variable loss & loss_dict
loss += grasp_loss
loss_dict.update(grasp_loss_dict)
pred_masks = self.postprocess_masks(
torch.cat([x['low_res_logits'] for x in outputs], dim=0),
input_size=image_record["image"].shape[-2:],
original_size=(1024, 1024),
)
if 'masks' in batched_input[0]:
# 4. Calculate segmentation loss
sf_loss = sigmoid_focal_loss(pred_masks.flatten(1),
torch.stack([x['masks'] for x in batched_input], dim=0).unsqueeze(1).type(torch.float32).flatten(1), len(batched_input))
d_loss = dice_loss(pred_masks.flatten(1),
torch.stack([x['masks'] for x in batched_input], dim=0).unsqueeze(1).type(torch.float32).flatten(1), len(batched_input))
loss += sf_loss + d_loss
loss_dict["sf_loss"] = sf_loss
loss_dict["d_loss"] = d_loss
return DetrSegmentationOutput(
loss=loss,
loss_dict=loss_dict,
logits=grasp_logits,
pred_boxes=pred_grasps,
pred_masks=pred_masks,
)
return modified_forward
def add_inference_method(self):
def infer(
batched_input: List[Dict[str, Any]],
multimask_output: bool,
):
input_images = torch.stack([x["image"] for x in batched_input], dim=0)
image_embeddings = self.image_encoder(input_images)
outputs = []
srcs = []
curr_embedding = image_embeddings[0]
image_record = batched_input[0]
if "point_coords" in image_record:
points = (image_record["point_coords"], image_record["point_labels"])
else:
points = None
sparse_embeddings, dense_embeddings = self.prompt_encoder(
points=points,
boxes=image_record.get("boxes", None),
masks=image_record.get("mask_inputs", None),
)
low_res_masks, iou_predictions, src = self.mask_decoder(
image_embeddings=curr_embedding.unsqueeze(0),
image_pe=self.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=multimask_output,
)
outputs.append(
{
"iou_predictions": iou_predictions,
"low_res_logits": low_res_masks,
}
)
srcs.append(src[0])
n_queries = iou_predictions.size(0)
batch_size = n_queries
# forward grasp decoder here
# 1. Get encoder hidden states
grasp_encoder_hidden_states = self.grasp_img_pos_embed(src.permute(0, 2, 3, 1))
# 2. Get query embeddings
grasp_query_pe = self.grasp_query_position_embeddings(torch.arange(20).to(self.device))
# repeat to batchsize
grasp_query_pe = grasp_query_pe.repeat(n_queries, 1, 1)
pixel_masks = torch.cat([batched_input[i]['pixel_mask'] for i in range(len(batched_input))], dim=0)
pixel_masks = pixel_masks.repeat(n_queries, 1, 1)
downsampled_pixel_masks = nn.functional.interpolate(pixel_masks.unsqueeze(1).float(), size=(64, 64),
mode='nearest').squeeze(1).bool()
downsampled_pixel_masks = downsampled_pixel_masks.view(batch_size, 64 * 64).contiguous()
grasp_encoder_hidden_states = grasp_encoder_hidden_states.view(batch_size, 64 * 64, 256).contiguous()
grasp_decoder_outputs = self.grasp_decoder(
inputs_embeds=torch.zeros_like(grasp_query_pe),
attention_mask=None,
position_embeddings=torch.zeros_like(grasp_encoder_hidden_states),
query_position_embeddings=grasp_query_pe,
encoder_hidden_states=grasp_encoder_hidden_states,
encoder_attention_mask=downsampled_pixel_masks,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
)
grasp_sequence_output = grasp_decoder_outputs[0]
grasp_logits = self.grasp_label_classifier(grasp_sequence_output)
pred_grasps = self.grasp_predictor(grasp_sequence_output).sigmoid()
pred_masks = self.postprocess_masks(
torch.cat([x['low_res_logits'] for x in outputs], dim=0),
input_size=image_record["image"].shape[-2:],
original_size=(1024, 1024),
)
return DetrSegmentationOutput(
loss=0,
loss_dict={},
logits=grasp_logits,
pred_boxes=pred_grasps,
pred_masks=pred_masks,
)
return infer