import gradio as gr from huggingface_hub import InferenceClient # Initialize the Hugging Face Inference Client with your chosen model client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # Change this to any model you want # Function to handle chat responses def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Prepare the message and history for sending to the model messages = [{"role": "system", "content": system_message}] # Add user and assistant history to the message for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) # Add the new user message to the conversation messages.append({"role": "user", "content": message}) response = "" # Get the model response and stream the output as it's generated for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # Create the Gradio chat interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) # Launch the Gradio interface if __name__ == "__main__": demo.launch()