File size: 11,423 Bytes
827013d b2f0dbe 827013d d76e3c3 b2f0dbe d294ddd c0fbf58 b2f0dbe 304ad78 5746517 f39513f 27c954a 29dacc9 7456079 29dacc9 7456079 827c577 29dacc9 827c577 29dacc9 47e21f7 29dacc9 827c577 29dacc9 7456079 29dacc9 7456079 29dacc9 b2f0dbe 304ad78 b2f0dbe 83f9cc7 b2f0dbe d76e3c3 827c577 3f8f0be b2f0dbe d76e3c3 827c577 b2f0dbe 74b8f0b d76e3c3 8acae36 b2f0dbe 2ca0c6c c0fbf58 83f9cc7 09e5e64 d294ddd e966d07 b2f0dbe bbaf99c 827013d b2f0dbe 827013d 05644d3 f64f4ce 1488783 f64f4ce 8285890 f64f4ce b2f0dbe f64f4ce b2f0dbe 1488783 f64f4ce 1488783 b2f0dbe f64f4ce 06e0c9e f64f4ce 2e3c879 f64f4ce 178c7b7 af5fce0 178c7b7 f64f4ce 2e3c879 f64f4ce 8acae36 c0fbf58 f64f4ce f39513f 8acae36 f64f4ce f39513f 827013d f64f4ce b2f0dbe f64f4ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import pixeltable as pxt
import os
import openai
import gradio as gr
import getpass
from pixeltable.iterators import FrameIterator
from pixeltable.functions.video import extract_audio
from pixeltable.functions.audio import get_metadata
from pixeltable.functions import openai
# Store OpenAI API Key
if 'OPENAI_API_KEY' not in os.environ:
os.environ['OPENAI_API_KEY'] = getpass.getpass('Enter your OpenAI API key:')
MAX_VIDEO_SIZE_MB = 35
CONCURRENCY_LIMIT = 1
def process_and_generate_post(video_file, social_media_type, progress=gr.Progress()):
progress(0, desc="Initializing...")
# Create a Table, a View, and Computed Columns
pxt.drop_dir('directory', force=True)
pxt.create_dir('directory')
t = pxt.create_table(
'directory.video_table', {
"video": pxt.Video,
"sm_type": pxt.String
}
)
frames_view = pxt.create_view(
"directory.frames",
t,
iterator=FrameIterator.create(video=t.video, fps=1)
)
# Create computed columns to store transformations and persist outputs
t.add_computed_column(audio=extract_audio(t.video, format='mp3'))
t.add_computed_column(metadata=get_metadata(t.audio))
t.add_computed_column(transcription=openai.transcriptions(audio=t.audio, model='whisper-1'))
t.add_computed_column(transcription_text=t.transcription.text)
progress(0.1, desc="Creating UDFs...")
# Custom User-Defined Function (UDF) for Generating Social Media Prompts
@pxt.udf
def prompt(A: str, B: str) -> list[dict]:
system_msg = 'You are an expert in creating social media content and you generate effective post, based on user content. Respect the social media platform guidelines and constraints.'
user_msg = f'A: "{A}" \n B: "{B}"'
return [
{'role': 'system', 'content': system_msg},
{'role': 'user', 'content': user_msg}
]
# Apply the UDF to create a new column
t.add_computed_column(message=prompt(t.sm_type, t.transcription_text))
"""## Generating Responses with OpenAI's GPT Model"""
progress(0.2, desc="Calling LLMs")
# # Generate responses using OpenAI's chat completion API
t.add_computed_column(response=openai.chat_completions(messages=t.message, model='gpt-4o-mini-2024-07-18', max_tokens=500))
## Extract the content of the response
t.add_computed_column(answer=t.response.choices[0].message.content)
if not video_file:
return "Please upload a video file.", None
try:
# Check video file size
video_size = os.path.getsize(video_file) / (1024 * 1024) # Convert to MB
if video_size > MAX_VIDEO_SIZE_MB:
return f"The video file is larger than {MAX_VIDEO_SIZE_MB} MB. Please upload a smaller file.", None
progress(0.4, desc="Inserting video...")
# # Insert a video into the table. Pixeltable supports referencing external data sources like URLs
t.insert([{
"video": video_file,
"sm_type": social_media_type
}])
progress(0.6, desc="Generating posts...")
# Retrieve Social media posts
social_media_post = t.select(t.answer).tail(1)['answer'][0]
# Retrieve Audio
audio = t.select(t.audio).tail(1)['audio'][0]
# Retrieve thumbnails
thumbnails = frames_view.select(frames_view.frame).tail(6)['frame']
progress(0.8, desc="Preparing results...")
# Retrieve Pixeltable Table containing all videos and stored data
df_output = t.select(t.transcription_text).tail(1)['transcription_text'][0]
#Display content
return social_media_post, thumbnails, df_output, audio
except Exception as e:
return f"An error occurred: {str(e)}", None
# Gradio Interface
def gradio_interface():
with gr.Blocks(theme=gr.themes.Base()) as demo:
# Header Section with Logo and Title
gr.Markdown(
"""
<div style="text-align: left; margin-bottom: 20px;">
<img src="https://raw.githubusercontent.com/pixeltable/pixeltable/main/docs/resources/pixeltable-logo-large.png" alt="Pixeltable" style="max-width: 200px; margin-bottom: 20px;" />
<h1 style="margin-bottom: 0.5em;">πΉ Video to Social Media Post Generator</h1>
<p style="color: #666; margin-bottom: 1em;">Transform your videos into engaging social media content using AI</p>
</div>
"""
)
with gr.Row():
# Left Column - Platform Features
with gr.Column():
with gr.Accordion("π― Key Features", open=False):
gr.Markdown(
"""
* π₯ **Smart Video Processing**
- Automatic frame extraction
- High-quality audio separation
- Real-time transcription
* π€ **AI-Powered Content**
- Platform-specific post generation
- Engaging caption creation
- Tone & style optimization
* π **Complete Analytics**
- Transcription review
- Thumbnail selection
- Audio verification
"""
)
# Right Column - How It Works
with gr.Column():
with gr.Accordion("π οΈ How It Works", open=False):
gr.Markdown(
"""
1. π€ **Upload Your Video**
- Choose your content
- Select target platform
- Start processing
2. π **AI Processing**
- Video analysis
- Content extraction
- Post generation
3. β¨ **Review & Export**
- Preview generated posts
- Select thumbnails
- Copy to clipboard
"""
)
# Main Interface
with gr.Tabs() as tabs:
# Upload Tab
with gr.TabItem("π€ Upload & Generate", id=0):
with gr.Row():
# Left Column - Input Controls
with gr.Column():
video_input = gr.Video(
label="Upload Your Video",
include_audio=True,
max_length=300,
height='400px',
autoplay=False
)
with gr.Group():
gr.Markdown("### π― Target Platform")
social_media_type = gr.Radio(
choices=[
"X (Twitter)",
"Facebook",
"LinkedIn",
"Instagram"
],
value="X (Twitter)",
label="Select where you want to share:",
interactive=True
)
generate_btn = gr.Button(
"π Generate Post",
scale=1,
size="lg",
variant="primary"
)
# Right Column - Output Display
with gr.Column():
output = gr.Textbox(
label="β¨ Generated Post",
show_copy_button=True,
lines=4
)
gr.Markdown("### πΌοΈ Thumbnail Options")
thumbnail = gr.Gallery(
label="Select your preferred thumbnail",
show_download_button=True,
show_fullscreen_button=True,
height='200px',
object_fit="contain"
)
# Review Tab
with gr.TabItem("π Review & Export", id=1):
with gr.Row():
with gr.Column():
df_output = gr.Textbox(
label="π Video Transcription",
show_copy_button=True,
lines=8
)
audio = gr.Audio(
label="π΅ Extracted Audio",
show_download_button=True,
type="filepath"
)
# Example Section
gr.Markdown("### π Sample Usage")
with gr.Row():
gr.Examples(
examples=[
["example1.mp4", "X (Twitter)"],
["example2.mp4", "LinkedIn"],
["example3.mp4", "Instagram"],
["example4.mp4", "Facebook"]
],
inputs=[video_input, social_media_type],
label="Try with sample videos:",
examples_per_page=5
)
# Footer
gr.HTML(
"""
<div style="text-align: center; margin-top: 2rem; padding-top: 1rem; border-top: 1px solid #ccc;">
<p style="color: #666; font-size: 0.9em;">
Powered by <a href="https://github.com/pixeltable/pixeltable" target="_blank" style="color: #F25022; text-decoration: none;">Pixeltable</a>
| <a href="https://docs.pixeltable.com" target="_blank" style="color: #666;">Documentation</a>
| <a href="https://github.com/pixeltable/pixeltable" target="_blank" style="color: #666;">GitHub</a>
</p>
</div>
"""
)
# Wire up the generate button click event
generate_btn.click(
fn=process_and_generate_post,
inputs=[video_input, social_media_type],
outputs=[output, thumbnail, df_output, audio],
api_name="generate",
show_progress="full",
trigger_mode='once'
)
return demo
# Launch the Gradio interface with production settings
if __name__ == "__main__":
demo = gradio_interface()
demo.launch(
server_name="0.0.0.0", # Allow external access
server_port=7860, # Standard Gradio port
share=False, # Disable sharing in production
show_api=False, # Hide API docs in production
show_error=False, # Hide detailed errors in production
ssl_verify=True, # Enable SSL verification
quiet=True # Reduce console output
) |