File size: 7,353 Bytes
152a369
 
 
 
 
214ca3f
 
 
 
 
 
 
 
 
 
152a369
 
 
214ca3f
 
 
 
 
 
152a369
214ca3f
 
 
152a369
214ca3f
 
152a369
214ca3f
 
 
 
 
 
152a369
214ca3f
 
 
 
 
 
 
 
 
 
 
152a369
214ca3f
 
 
 
 
 
152a369
b41cec1
 
214ca3f
 
 
 
 
 
 
 
 
b41cec1
214ca3f
 
 
 
 
 
 
 
b41cec1
214ca3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152a369
214ca3f
 
152a369
214ca3f
 
 
 
 
 
152a369
 
 
b41cec1
 
 
214ca3f
645d14b
214ca3f
 
b41cec1
 
214ca3f
b41cec1
214ca3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152a369
b41cec1
214ca3f
3a73782
214ca3f
 
 
 
 
645d14b
214ca3f
 
 
 
 
 
 
 
 
 
 
 
 
 
b41cec1
214ca3f
b41cec1
 
152a369
b41cec1
 
 
 
 
 
 
 
 
 
214ca3f
 
 
b41cec1
 
 
 
 
 
 
152a369
214ca3f
 
 
 
 
 
 
 
152a369
b41cec1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import gradio as gr
import pixeltable as pxt
from pixeltable.functions.huggingface import clip_image, clip_text
from pixeltable.iterators import FrameIterator
import os
import logging

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Initialize Pixeltable directory constants
PROJECT_DIR = 'video_search'
VIDEOS_TABLE = f'{PROJECT_DIR}.videos'
FRAMES_VIEW = f'{PROJECT_DIR}.frames'

# Process video and create index
def process_video(video_file, progress=gr.Progress()):
    if video_file is None:
        return "Please upload a video file first."
    
    try:
        progress(0, desc="Initializing...")
        logger.info(f"Processing video: {video_file.name}")

        # Pixeltable setup
        pxt.drop_dir(PROJECT_DIR, force=True)
        pxt.create_dir(PROJECT_DIR)

        # Create video table
        video_table = pxt.create_table(VIDEOS_TABLE, {'video': pxt.Video})

        # Create frames view
        frames_view = pxt.create_view(
            FRAMES_VIEW, 
            video_table, 
            iterator=FrameIterator.create(video=video_table.video, fps=1)
        )

        progress(0.2, desc="Inserting video...")
        video_table.insert([{'video': video_file.name}])
        
        progress(0.4, desc="Creating embedding index...")
        # Use the CLIP model for both text and image embedding
        clip_model = 'openai/clip-vit-base-patch32'
        frames_view.add_embedding_index(
            'frame',
            string_embed=clip_text.using(model_id=clip_model),
            image_embed=clip_image.using(model_id=clip_model)
        )

        progress(1.0, desc="Processing complete")
        return "✅ Video processed successfully! You can now search for specific moments using text or images."
    
    except Exception as e:
        logger.error(f"Error processing video: {str(e)}")
        return f"Error processing video: {str(e)}"

# Perform similarity search
def similarity_search(query, search_type, num_results, progress=gr.Progress()):
    try:
        if not query:
            return []
            
        frames_view = pxt.get_table(FRAMES_VIEW)
        if frames_view is None:
            return []
        
        progress(0.5, desc="Performing search...")
        sim = frames_view.frame.similarity(query)
        
        results = frames_view.order_by(sim, asc=False).limit(num_results).select(
            frames_view.frame, 
            similarity=sim
        ).collect()
        
        progress(1.0, desc="Search complete")
        return [row['frame'] for row in results]
    
    except Exception as e:
        logger.error(f"Error during search: {str(e)}")
        return []

# Create CSS for better styling
css = """
.container {
    max-width: 1200px;
    margin: 0 auto;
}
.header {
    display: flex;
    align-items: center;
    margin-bottom: 20px;
}
.header img {
    max-width: 120px;
    margin-right: 20px;
}
.step-header {
    background-color: #f5f5f5;
    padding: 10px;
    border-radius: 5px;
    margin-bottom: 15px;
}
.examples-section {
    margin-top: 30px;
}
"""

# Gradio interface
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
    gr.HTML(
        """
        <div class="header">
            <img src="https://raw.githubusercontent.com/pixeltable/pixeltable/main/docs/resources/pixeltable-logo-large.png" alt="Pixeltable" />
            <div>
                <h1>Video Frame Search with AI</h1>
                <p>Search through video content using natural language or images powered by <a href="https://github.com/pixeltable/pixeltable" target="_blank" style="color: #F25022; text-decoration: none; font-weight: bold;">Pixeltable</a>.</p>
            </div>
        </div>
        """
    )
    
    with gr.Row():
        with gr.Column(scale=1):
            gr.HTML('<div class="step-header"><h3>1. Insert video</h3></div>')
            
            video_file = gr.File(label="Upload Video", file_types=["video"])
            process_button = gr.Button("Process Video", variant="primary")
            process_output = gr.Textbox(label="Status", lines=2)
            
            gr.HTML('<div class="step-header"><h3>2. Search video frames</h3></div>')
            
            search_type = gr.Radio(
                ["Text", "Image"], 
                label="Search Type", 
                value="Text",
                info="Choose whether to search using text or an image"
            )
            text_input = gr.Textbox(
                label="Text Query",
                placeholder="Describe what you're looking for...",
                info="Example: 'person walking' or 'red car'"
            )
            image_input = gr.Image(
                label="Image Query", 
                type="pil", 
                visible=False,
                info="Upload an image to find similar frames"
            )
            num_results = gr.Slider(
                minimum=1, 
                maximum=20, 
                value=5, 
                step=1, 
                label="Number of Results",
                info="How many matching frames to display"
            )
            search_button = gr.Button("Search", variant="primary")
        
        with gr.Column(scale=2):
            gr.HTML('<div class="step-header"><h3>3. Visualize results</h3></div>')
            
            results_gallery = gr.Gallery(
                label="Search Results", 
                columns=3,
                allow_preview=True,
                object_fit="contain"
            )
       
            with gr.Accordion("Example Videos", open=False):
                gr.Markdown("Click one of the examples below to get started")
                gr.Examples(
                    examples=[
                        ["bangkok.mp4"],
                        ["lotr.mp4"],
                        ["mi.mp4"],
                    ],
                    inputs=[video_file],
                    outputs=[process_output],
                    fn=process_video,
                    cache_examples=True
                )
    
    # Handle UI interactions
    def update_search_input(choice):
        return gr.update(visible=choice=="Text"), gr.update(visible=choice=="Image")

    search_type.change(update_search_input, search_type, [text_input, image_input])
    
    process_button.click(
        process_video,
        inputs=[video_file],
        outputs=[process_output]
    )
    
    def perform_search(search_type, text_query, image_query, num_results):
        query = text_query if search_type == "Text" else image_query
        if query is None or (isinstance(query, str) and query.strip() == ""):
            return gr.Gallery(label="Please enter a valid search query")
            
        return similarity_search(query, search_type, num_results)

    search_button.click(
        perform_search,
        inputs=[search_type, text_input, image_input, num_results],
        outputs=[results_gallery]
    )

    # Add keyboard shortcuts
    search_type.change(lambda: None, None, None, _js="() => {document.activeElement.blur();}")
    text_input.submit(
        perform_search,
        inputs=[search_type, text_input, image_input, num_results],
        outputs=[results_gallery]
    )

if __name__ == "__main__":
    demo.launch()