import gradio as gr import pixeltable as pxt from pixeltable.functions.mistralai import chat_completions from datetime import datetime from textblob import TextBlob import nltk from nltk.tokenize import word_tokenize from nltk.corpus import stopwords import os import getpass import re # Ensure necessary NLTK data is downloaded nltk.download('punkt', quiet=True) nltk.download('stopwords', quiet=True) # Set up Mistral API key if 'MISTRAL_API_KEY' not in os.environ: os.environ['MISTRAL_API_KEY'] = getpass.getpass('Mistral AI API Key:') # Define UDFs @pxt.udf def get_sentiment_score(text: str) -> float: return TextBlob(text).sentiment.polarity @pxt.udf def extract_keywords(text: str, num_keywords: int = 5) -> list: stop_words = set(stopwords.words('english')) words = word_tokenize(text.lower()) keywords = [word for word in words if word.isalnum() and word not in stop_words] return sorted(set(keywords), key=keywords.count, reverse=True)[:num_keywords] @pxt.udf def calculate_readability(text: str) -> float: words = len(re.findall(r'\w+', text)) sentences = len(re.findall(r'\w+[.!?]', text)) or 1 average_words_per_sentence = words / sentences return 206.835 - 1.015 * average_words_per_sentence def run_inference_and_analysis(task, system_prompt, input_text, temperature, top_p, max_tokens, min_tokens, stop, random_seed, safe_prompt): # Initialize Pixeltable pxt.drop_table('mistral_prompts', ignore_errors=True) t = pxt.create_table('mistral_prompts', { 'task': pxt.StringType(), 'system': pxt.StringType(), 'input_text': pxt.StringType(), 'timestamp': pxt.TimestampType(), 'temperature': pxt.FloatType(), 'top_p': pxt.FloatType(), 'max_tokens': pxt.IntType(), 'min_tokens': pxt.IntType(), 'stop': pxt.StringType(), 'random_seed': pxt.IntType(), 'safe_prompt': pxt.BoolType() }) # Insert new row t.insert([{ 'task': task, 'system': system_prompt, 'input_text': input_text, 'timestamp': datetime.now(), 'temperature': temperature, 'top_p': top_p, 'max_tokens': max_tokens, 'min_tokens': min_tokens, 'stop': stop, 'random_seed': random_seed, 'safe_prompt': safe_prompt }]) # Define messages for chat completion msgs = [ {'role': 'system', 'content': t.system}, {'role': 'user', 'content': t.input_text} ] common_params = { 'messages': msgs, 'temperature': temperature, 'top_p': top_p, 'max_tokens': max_tokens if max_tokens is not None else 300, 'min_tokens': min_tokens, 'stop': stop.split(',') if stop else None, 'random_seed': random_seed, 'safe_prompt': safe_prompt } # Run inference with both models t['open_mistral_nemo'] = chat_completions(model='open-mistral-nemo', **common_params) t['mistral_medium'] = chat_completions(model='mistral-medium', **common_params) # Extract responses t['omn_response'] = t.open_mistral_nemo.choices[0].message.content t['ml_response'] = t.mistral_medium.choices[0].message.content # Run analysis t['large_sentiment_score'] = get_sentiment_score(t.ml_response) t['large_keywords'] = extract_keywords(t.ml_response) t['large_readability_score'] = calculate_readability(t.ml_response) t['open_sentiment_score'] = get_sentiment_score(t.omn_response) t['open_keywords'] = extract_keywords(t.omn_response) t['open_readability_score'] = calculate_readability(t.omn_response) # Get results results = t.select( t.omn_response, t.ml_response, t.large_sentiment_score, t.open_sentiment_score, t.large_keywords, t.open_keywords, t.large_readability_score, t.open_readability_score ).tail(1) return ( results['omn_response'][0], results['ml_response'][0], results['large_sentiment_score'][0], results['open_sentiment_score'][0], results['large_keywords'][0], results['open_keywords'][0], results['large_readability_score'][0], results['open_readability_score'][0] ) def gradio_interface(): with gr.Blocks() as demo: gr.Markdown("# LLM Prompt Studio") with gr.Row(): with gr.Column(): # Input components task = gr.Textbox(label="Task") system_prompt = gr.Textbox(label="System Prompt", lines=3) input_text = gr.Textbox(label="Input Text", lines=3) with gr.Accordion("Advanced Settings", open=False): temperature = gr.Slider(minimum=0, maximum=1, value=0.7, step=0.1, label="Temperature") top_p = gr.Slider(minimum=0, maximum=1, value=0.9, step=0.1, label="Top P") max_tokens = gr.Number(label="Max Tokens", value=300) min_tokens = gr.Number(label="Min Tokens", value=None) stop = gr.Textbox(label="Stop Sequences (comma-separated)") random_seed = gr.Number(label="Random Seed", value=None) safe_prompt = gr.Checkbox(label="Safe Prompt", value=False) # Example prompts examples = [ ["Sentiment Analysis", "You are an AI trained to analyze the sentiment of text. Provide a detailed analysis of the emotional tone, highlighting key phrases that indicate sentiment.", "The new restaurant downtown exceeded all my expectations. The food was exquisite, the service impeccable, and the ambiance was perfect for a romantic evening. I can't wait to go back!", 0.3, 0.95, 200, None, "", None, False], ["Story Generation", "You are a creative writer. Generate a short, engaging story based on the given prompt. Include vivid descriptions and an unexpected twist.", "In a world where dreams are shared, a young girl discovers she can manipulate other people's dreams.", 0.9, 0.8, 500, 300, "The end", None, False] ] gr.Examples( examples=examples, inputs=[ task, system_prompt, input_text, temperature, top_p, max_tokens, min_tokens, stop, random_seed, safe_prompt ], outputs=[ omn_response, ml_response, large_sentiment, open_sentiment, large_keywords, open_keywords, large_readability, open_readability ], fn=run_inference_and_analysis ) submit_btn = gr.Button("Run Analysis") with gr.Column(): # Output components omn_response = gr.Textbox(label="Open-Mistral-Nemo Response") ml_response = gr.Textbox(label="Mistral-Medium Response") with gr.Row(): large_sentiment = gr.Number(label="Mistral-Medium Sentiment") open_sentiment = gr.Number(label="Open-Mistral-Nemo Sentiment") with gr.Row(): large_keywords = gr.Textbox(label="Mistral-Medium Keywords") open_keywords = gr.Textbox(label="Open-Mistral-Nemo Keywords") with gr.Row(): large_readability = gr.Number(label="Mistral-Medium Readability") open_readability = gr.Number(label="Open-Mistral-Nemo Readability") submit_btn.click( run_inference_and_analysis, inputs=[ task, system_prompt, input_text, temperature, top_p, max_tokens, min_tokens, stop, random_seed, safe_prompt ], outputs=[ omn_response, ml_response, large_sentiment, open_sentiment, large_keywords, open_keywords, large_readability, open_readability ] ) return demo if __name__ == "__main__": gradio_interface().launch()