Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import pixeltable as pxt
|
| 4 |
+
from pixeltable.iterators import DocumentSplitter
|
| 5 |
+
import numpy as np
|
| 6 |
+
from pixeltable.functions.huggingface import sentence_transformer
|
| 7 |
+
from pixeltable.functions import openai
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
+
# Ensure a clean slate for the demo
|
| 11 |
+
pxt.drop_dir('rag_demo', force=True)
|
| 12 |
+
pxt.create_dir('rag_demo')
|
| 13 |
+
|
| 14 |
+
# Set up embedding function
|
| 15 |
+
@pxt.expr_udf
|
| 16 |
+
def e5_embed(text: str) -> np.ndarray:
|
| 17 |
+
return sentence_transformer(text, model_id='intfloat/e5-large-v2')
|
| 18 |
+
|
| 19 |
+
# Create prompt function
|
| 20 |
+
@pxt.udf
|
| 21 |
+
def create_prompt(top_k_list: list[dict], question: str) -> str:
|
| 22 |
+
concat_top_k = '\n\n'.join(
|
| 23 |
+
elt['text'] for elt in reversed(top_k_list)
|
| 24 |
+
)
|
| 25 |
+
return f'''
|
| 26 |
+
PASSAGES:
|
| 27 |
+
|
| 28 |
+
{concat_top_k}
|
| 29 |
+
|
| 30 |
+
QUESTION:
|
| 31 |
+
|
| 32 |
+
{question}'''
|
| 33 |
+
|
| 34 |
+
def process_files(ground_truth_file, pdf_files):
|
| 35 |
+
# Process ground truth file
|
| 36 |
+
if ground_truth_file.name.endswith('.csv'):
|
| 37 |
+
df = pd.read_csv(ground_truth_file.name)
|
| 38 |
+
else:
|
| 39 |
+
df = pd.read_excel(ground_truth_file.name)
|
| 40 |
+
|
| 41 |
+
queries_t = pxt.create_table('rag_demo.queries', df)
|
| 42 |
+
|
| 43 |
+
# Process PDF files
|
| 44 |
+
documents_t = pxt.create_table(
|
| 45 |
+
'rag_demo.documents',
|
| 46 |
+
{'document': pxt.DocumentType()}
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
for pdf_file in pdf_files:
|
| 50 |
+
documents_t.insert({'document': pdf_file.name})
|
| 51 |
+
|
| 52 |
+
# Create chunks view
|
| 53 |
+
chunks_t = pxt.create_view(
|
| 54 |
+
'rag_demo.chunks',
|
| 55 |
+
documents_t,
|
| 56 |
+
iterator=DocumentSplitter.create(
|
| 57 |
+
document=documents_t.document,
|
| 58 |
+
separators='token_limit',
|
| 59 |
+
limit=300
|
| 60 |
+
)
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
# Add embedding index
|
| 64 |
+
chunks_t.add_embedding_index('text', string_embed=e5_embed)
|
| 65 |
+
|
| 66 |
+
# Create top_k query
|
| 67 |
+
@chunks_t.query
|
| 68 |
+
def top_k(query_text: str):
|
| 69 |
+
sim = chunks_t.text.similarity(query_text)
|
| 70 |
+
return (
|
| 71 |
+
chunks_t.order_by(sim, asc=False)
|
| 72 |
+
.select(chunks_t.text, sim=sim)
|
| 73 |
+
.limit(5)
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
# Add computed columns to queries_t
|
| 77 |
+
queries_t['question_context'] = chunks_t.top_k(queries_t.Question)
|
| 78 |
+
queries_t['prompt'] = create_prompt(
|
| 79 |
+
queries_t.question_context, queries_t.Question
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
# Prepare messages for OpenAI
|
| 83 |
+
messages = [
|
| 84 |
+
{
|
| 85 |
+
'role': 'system',
|
| 86 |
+
'content': 'Please read the following passages and answer the question based on their contents.'
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
'role': 'user',
|
| 90 |
+
'content': queries_t.prompt
|
| 91 |
+
}
|
| 92 |
+
]
|
| 93 |
+
|
| 94 |
+
# Add OpenAI response column
|
| 95 |
+
queries_t['response'] = openai.chat_completions(
|
| 96 |
+
model='gpt-4-0125-preview', messages=messages
|
| 97 |
+
)
|
| 98 |
+
queries_t['answer'] = queries_t.response.choices[0].message.content
|
| 99 |
+
|
| 100 |
+
return "Files processed successfully!"
|
| 101 |
+
|
| 102 |
+
def query_llm(question):
|
| 103 |
+
queries_t = pxt.get_table('rag_demo.queries')
|
| 104 |
+
chunks_t = pxt.get_table('rag_demo.chunks')
|
| 105 |
+
|
| 106 |
+
# Perform top-k lookup
|
| 107 |
+
context = chunks_t.top_k(question).collect()
|
| 108 |
+
|
| 109 |
+
# Create prompt
|
| 110 |
+
prompt = create_prompt(context, question)
|
| 111 |
+
|
| 112 |
+
# Prepare messages for OpenAI
|
| 113 |
+
messages = [
|
| 114 |
+
{
|
| 115 |
+
'role': 'system',
|
| 116 |
+
'content': 'Please read the following passages and answer the question based on their contents.'
|
| 117 |
+
},
|
| 118 |
+
{
|
| 119 |
+
'role': 'user',
|
| 120 |
+
'content': prompt
|
| 121 |
+
}
|
| 122 |
+
]
|
| 123 |
+
|
| 124 |
+
# Get LLM response
|
| 125 |
+
response = openai.chat_completions(model='gpt-4-0125-preview', messages=messages)
|
| 126 |
+
answer = response.choices[0].message.content
|
| 127 |
+
|
| 128 |
+
# Add new row to queries_t
|
| 129 |
+
new_row = {'Question': question, 'answer': answer}
|
| 130 |
+
queries_t.insert([new_row])
|
| 131 |
+
|
| 132 |
+
# Return updated dataframe
|
| 133 |
+
return queries_t.select(queries_t.Question, queries_t.answer).collect()
|
| 134 |
+
|
| 135 |
+
# Gradio interface
|
| 136 |
+
with gr.Blocks() as demo:
|
| 137 |
+
gr.Markdown("# RAG Demo App")
|
| 138 |
+
|
| 139 |
+
with gr.Row():
|
| 140 |
+
ground_truth_file = gr.File(label="Upload Ground Truth (CSV or XLSX)")
|
| 141 |
+
pdf_files = gr.File(label="Upload PDF Documents", file_count="multiple")
|
| 142 |
+
|
| 143 |
+
process_button = gr.Button("Process Files")
|
| 144 |
+
process_output = gr.Textbox(label="Processing Output")
|
| 145 |
+
|
| 146 |
+
question_input = gr.Textbox(label="Enter your question")
|
| 147 |
+
query_button = gr.Button("Query LLM")
|
| 148 |
+
|
| 149 |
+
output_dataframe = gr.Dataframe(label="LLM Outputs")
|
| 150 |
+
|
| 151 |
+
process_button.click(process_files, inputs=[ground_truth_file, pdf_files], outputs=process_output)
|
| 152 |
+
query_button.click(query_llm, inputs=question_input, outputs=output_dataframe)
|
| 153 |
+
|
| 154 |
+
if __name__ == "__main__":
|
| 155 |
+
demo.launch()
|