Spaces:
Runtime error
Runtime error
File size: 19,712 Bytes
128757a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
import logging
import tempfile
import os
import torch
import numpy as np
import json
from collections import OrderedDict
from tqdm import tqdm
from maskrcnn_benchmark.modeling.roi_heads.mask_head.inference import Masker
from maskrcnn_benchmark.structures.bounding_box import BoxList
from maskrcnn_benchmark.structures.boxlist_ops import boxlist_iou
def do_coco_evaluation(
dataset,
predictions,
box_only,
output_folder,
iou_types,
expected_results,
expected_results_sigma_tol,
):
logger = logging.getLogger("maskrcnn_benchmark.inference")
if box_only:
logger.info("Evaluating bbox proposals")
if dataset.coco is None and output_folder:
json_results = prepare_for_tsv_detection(predictions, dataset)
with open(os.path.join(output_folder, "box_proposals.json"), "w") as f:
json.dump(json_results, f)
return None
areas = {"all": "", "small": "s", "medium": "m", "large": "l"}
res = COCOResults("box_proposal")
for limit in [100, 1000]:
for area, suffix in areas.items():
stats = evaluate_box_proposals(
predictions, dataset, area=area, limit=limit
)
key = "AR{}@{:d}".format(suffix, limit)
res.results["box_proposal"][key] = stats["ar"].item()
logger.info(res)
check_expected_results(res, expected_results, expected_results_sigma_tol)
if output_folder:
torch.save(res, os.path.join(output_folder, "box_proposals.pth"))
return res, predictions
logger.info("Preparing results for COCO format")
coco_results = {}
if "bbox" in iou_types:
logger.info("Preparing bbox results")
if dataset.coco is None:
coco_results["bbox"] = prepare_for_tsv_detection(predictions, dataset)
else:
coco_results["bbox"] = prepare_for_coco_detection(predictions, dataset)
if "segm" in iou_types:
logger.info("Preparing segm results")
coco_results["segm"] = prepare_for_coco_segmentation(predictions, dataset)
if 'keypoints' in iou_types:
logger.info('Preparing keypoints results')
coco_results['keypoints'] = prepare_for_coco_keypoint(predictions, dataset)
results = COCOResults(*iou_types)
logger.info("Evaluating predictions")
for iou_type in iou_types:
with tempfile.NamedTemporaryFile() as f:
file_path = f.name
if output_folder:
file_path = os.path.join(output_folder, iou_type + ".json")
if dataset.coco:
res = evaluate_predictions_on_coco(
dataset.coco, coco_results[iou_type], file_path, iou_type
)
results.update(res)
elif output_folder:
with open(file_path, "w") as f:
json.dump(coco_results[iou_type], f)
logger.info(results)
check_expected_results(results, expected_results, expected_results_sigma_tol)
if output_folder:
torch.save(results, os.path.join(output_folder, "coco_results.pth"))
return results, coco_results
def prepare_for_tsv_detection(predictions, dataset):
# assert isinstance(dataset, COCODataset)
proposal_results = []
image_list = []
for im_id, prediction in enumerate(predictions):
image_info = dataset.get_img_info(im_id)
if len(prediction) == 0:
continue
# TODO replace with get_img_info?
image_id = image_info["id"]
image_width = image_info["width"]
image_height = image_info["height"]
prediction = prediction.resize((image_width, image_height))
prediction = prediction.convert("xywh")
boxes = prediction.bbox.tolist()
scores = prediction.get_field("scores").tolist()
labels = prediction.get_field("labels").tolist()
if prediction.has_field("centers"):
centers = prediction.get_field("centers")
else:
centers = None
for k, box in enumerate(boxes):
proposal = {
"image_id": image_id,
"category_id": labels[k],
"bbox": box,
"score": scores[k],
"area": image_width * image_height,
"iscrowd": 0,
}
if centers is not None:
proposal.update(center=centers[k].tolist())
proposal_results.append(proposal)
image_list.append(image_info)
# categories = [{'supercategory': 'proposal', 'id': 0, 'name': 'proposal'}]
return dict(images=image_list, annotations=proposal_results)
def prepare_for_coco_detection(predictions, dataset):
# assert isinstance(dataset, COCODataset)
coco_results = []
for image_id, prediction in enumerate(predictions):
original_id = dataset.id_to_img_map[image_id]
if len(prediction) == 0:
continue
# TODO replace with get_img_info?
image_width = dataset.coco.imgs[original_id]["width"]
image_height = dataset.coco.imgs[original_id]["height"]
prediction = prediction.resize((image_width, image_height))
prediction = prediction.convert("xywh")
boxes = prediction.bbox.tolist()
scores = prediction.get_field("scores").tolist()
labels = prediction.get_field("labels").tolist()
for k, box in enumerate(boxes):
if labels[k] in dataset.contiguous_category_id_to_json_id:
coco_results.append(
{
"image_id": original_id,
"category_id": dataset.contiguous_category_id_to_json_id[labels[k]],
"bbox": box,
"score": scores[k],
})
return coco_results
def prepare_for_coco_segmentation(predictions, dataset):
import pycocotools.mask as mask_util
import numpy as np
masker = Masker(threshold=0.5, padding=1)
# assert isinstance(dataset, COCODataset)
coco_results = []
for image_id, prediction in tqdm(enumerate(predictions)):
original_id = dataset.id_to_img_map[image_id]
if len(prediction) == 0:
continue
# TODO replace with get_img_info?
image_width = dataset.coco.imgs[original_id]["width"]
image_height = dataset.coco.imgs[original_id]["height"]
prediction = prediction.resize((image_width, image_height))
masks = prediction.get_field("mask")
# t = time.time()
# Masker is necessary only if masks haven't been already resized.
if list(masks.shape[-2:]) != [image_height, image_width]:
masks = masker(masks.expand(1, -1, -1, -1, -1), prediction)
masks = masks[0]
# logger.info('Time mask: {}'.format(time.time() - t))
# prediction = prediction.convert('xywh')
# boxes = prediction.bbox.tolist()
scores = prediction.get_field("scores").tolist()
labels = prediction.get_field("labels").tolist()
# rles = prediction.get_field('mask')
rles = [
mask_util.encode(np.array(mask[0, :, :, np.newaxis], order="F"))[0]
for mask in masks
]
for rle in rles:
rle["counts"] = rle["counts"].decode("utf-8")
mapped_labels = [dataset.contiguous_category_id_to_json_id[i] for i in labels]
coco_results.extend(
[
{
"image_id": original_id,
"category_id": mapped_labels[k],
"segmentation": rle,
"score": scores[k],
}
for k, rle in enumerate(rles)
]
)
return coco_results
def prepare_for_coco_keypoint(predictions, dataset):
# assert isinstance(dataset, COCODataset)
coco_results = []
for image_id, prediction in enumerate(predictions):
original_id = dataset.id_to_img_map[image_id]
if len(prediction.bbox) == 0:
continue
# TODO replace with get_img_info?
image_width = dataset.coco.imgs[original_id]['width']
image_height = dataset.coco.imgs[original_id]['height']
prediction = prediction.resize((image_width, image_height))
prediction = prediction.convert('xywh')
boxes = prediction.bbox.tolist()
scores = prediction.get_field('scores').tolist()
labels = prediction.get_field('labels').tolist()
keypoints = prediction.get_field('keypoints')
keypoints = keypoints.resize((image_width, image_height))
keypoints = keypoints.to_coco_format()
mapped_labels = [dataset.contiguous_category_id_to_json_id[i] for i in labels]
coco_results.extend([{
'image_id': original_id,
'category_id': mapped_labels[k],
'keypoints': keypoint,
'score': scores[k]} for k, keypoint in enumerate(keypoints)])
return coco_results
# inspired from Detectron
def evaluate_box_proposals(
predictions, dataset, thresholds=None, area="all", limit=None
):
"""Evaluate detection proposal recall metrics. This function is a much
faster alternative to the official COCO API recall evaluation code. However,
it produces slightly different results.
"""
# Record max overlap value for each gt box
# Return vector of overlap values
areas = {
"all": 0,
"small": 1,
"medium": 2,
"large": 3,
"96-128": 4,
"128-256": 5,
"256-512": 6,
"512-inf": 7,
}
area_ranges = [
[0 ** 2, 1e5 ** 2], # all
[0 ** 2, 32 ** 2], # small
[32 ** 2, 96 ** 2], # medium
[96 ** 2, 1e5 ** 2], # large
[96 ** 2, 128 ** 2], # 96-128
[128 ** 2, 256 ** 2], # 128-256
[256 ** 2, 512 ** 2], # 256-512
[512 ** 2, 1e5 ** 2],
] # 512-inf
assert area in areas, "Unknown area range: {}".format(area)
area_range = area_ranges[areas[area]]
gt_overlaps = []
num_pos = 0
for image_id, prediction in enumerate(predictions):
original_id = dataset.id_to_img_map[image_id]
# TODO replace with get_img_info?
image_width = dataset.coco.imgs[original_id]["width"]
image_height = dataset.coco.imgs[original_id]["height"]
prediction = prediction.resize((image_width, image_height))
# sort predictions in descending order
# TODO maybe remove this and make it explicit in the documentation
if prediction.has_field("objectness"):
inds = prediction.get_field("objectness").sort(descending=True)[1]
else:
inds = prediction.get_field("scores").sort(descending=True)[1]
prediction = prediction[inds]
ann_ids = dataset.coco.getAnnIds(imgIds=original_id)
anno = dataset.coco.loadAnns(ann_ids)
gt_boxes = [obj["bbox"] for obj in anno if obj["iscrowd"] == 0]
gt_boxes = torch.as_tensor(gt_boxes).reshape(-1, 4) # guard against no boxes
gt_boxes = BoxList(gt_boxes, (image_width, image_height), mode="xywh").convert(
"xyxy"
)
gt_areas = torch.as_tensor([obj["area"] for obj in anno if obj["iscrowd"] == 0])
if len(gt_boxes) == 0:
continue
valid_gt_inds = (gt_areas >= area_range[0]) & (gt_areas <= area_range[1])
gt_boxes = gt_boxes[valid_gt_inds]
num_pos += len(gt_boxes)
if len(gt_boxes) == 0:
continue
if len(prediction) == 0:
continue
if limit is not None and len(prediction) > limit:
prediction = prediction[:limit]
overlaps = boxlist_iou(prediction, gt_boxes)
_gt_overlaps = torch.zeros(len(gt_boxes))
for j in range(min(len(prediction), len(gt_boxes))):
# find which proposal box maximally covers each gt box
# and get the iou amount of coverage for each gt box
max_overlaps, argmax_overlaps = overlaps.max(dim=0)
# find which gt box is 'best' covered (i.e. 'best' = most iou)
gt_ovr, gt_ind = max_overlaps.max(dim=0)
assert gt_ovr >= 0
# find the proposal box that covers the best covered gt box
box_ind = argmax_overlaps[gt_ind]
# record the iou coverage of this gt box
_gt_overlaps[j] = overlaps[box_ind, gt_ind]
assert _gt_overlaps[j] == gt_ovr
# mark the proposal box and the gt box as used
overlaps[box_ind, :] = -1
overlaps[:, gt_ind] = -1
# append recorded iou coverage level
gt_overlaps.append(_gt_overlaps)
if len(gt_overlaps) == 0:
return {
"ar": torch.zeros(1),
"recalls": torch.zeros(1),
"thresholds": thresholds,
"gt_overlaps": gt_overlaps,
"num_pos": num_pos,
}
gt_overlaps = torch.cat(gt_overlaps, dim=0)
gt_overlaps, _ = torch.sort(gt_overlaps)
if thresholds is None:
step = 0.05
thresholds = torch.arange(0.5, 0.95 + 1e-5, step, dtype=torch.float32)
recalls = torch.zeros_like(thresholds)
# compute recall for each iou threshold
for i, t in enumerate(thresholds):
recalls[i] = (gt_overlaps >= t).float().sum() / float(num_pos)
# ar = 2 * np.trapz(recalls, thresholds)
ar = recalls.mean()
return {
"ar": ar,
"recalls": recalls,
"thresholds": thresholds,
"gt_overlaps": gt_overlaps,
"num_pos": num_pos,
}
def evaluate_predictions_on_coco(
coco_gt, coco_results, json_result_file, iou_type="bbox"
):
import json
with open(json_result_file, "w") as f:
json.dump(coco_results, f)
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
coco_dt = coco_gt.loadRes(str(json_result_file)) if coco_results else COCO()
# coco_dt = coco_gt.loadRes(coco_results)
if iou_type == 'keypoints':
coco_gt = filter_valid_keypoints(coco_gt, coco_dt)
coco_eval = COCOeval(coco_gt, coco_dt, iou_type)
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
if iou_type == 'bbox':
summarize_per_category(coco_eval, json_result_file.replace('.json', '.csv'))
return coco_eval
def summarize_per_category(coco_eval, csv_output=None):
'''
Compute and display summary metrics for evaluation results.
Note this functin can *only* be applied on the default parameter setting
'''
def _summarize(iouThr=None, areaRng='all', maxDets=100):
p = coco_eval.params
titleStr = 'Average Precision'
typeStr = '(AP)'
iouStr = '{:0.2f}:{:0.2f}'.format(p.iouThrs[0], p.iouThrs[-1]) \
if iouThr is None else '{:0.2f}'.format(iouThr)
result_str = ' {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ], '. \
format(titleStr, typeStr, iouStr, areaRng, maxDets)
aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng]
mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets]
# dimension of precision: [TxRxKxAxM]
s = coco_eval.eval['precision']
# IoU
if iouThr is not None:
t = np.where(iouThr == p.iouThrs)[0]
s = s[t]
s = s[:, :, :, aind, mind]
if len(s[s > -1]) == 0:
mean_s = -1
else:
mean_s = np.mean(s[s > -1])
# cacluate AP(average precision) for each category
num_classes = len(p.catIds)
avg_ap = 0.0
for i in range(0, num_classes):
result_str += '{}, '.format(np.mean(s[:, :, i, :]))
avg_ap += np.mean(s[:, :, i, :])
result_str += ('{} \n'.format(avg_ap / num_classes))
return result_str
id2name = {}
for _, cat in coco_eval.cocoGt.cats.items():
id2name[cat['id']] = cat['name']
title_str = 'metric, '
for cid in coco_eval.params.catIds:
title_str += '{}, '.format(id2name[cid])
title_str += 'avg \n'
results = [title_str]
results.append(_summarize())
results.append(_summarize(iouThr=.5, maxDets=coco_eval.params.maxDets[2]))
results.append(_summarize(areaRng='small', maxDets=coco_eval.params.maxDets[2]))
results.append(_summarize(areaRng='medium', maxDets=coco_eval.params.maxDets[2]))
results.append(_summarize(areaRng='large', maxDets=coco_eval.params.maxDets[2]))
with open(csv_output, 'w') as f:
for result in results:
f.writelines(result)
def filter_valid_keypoints(coco_gt, coco_dt):
kps = coco_dt.anns[1]['keypoints']
for id, ann in coco_gt.anns.items():
ann['keypoints'][2::3] = [a * b for a, b in zip(ann['keypoints'][2::3], kps[2::3])]
ann['num_keypoints'] = sum(ann['keypoints'][2::3])
return coco_gt
class COCOResults(object):
METRICS = {
"bbox": ["AP", "AP50", "AP75", "APs", "APm", "APl"],
"segm": ["AP", "AP50", "AP75", "APs", "APm", "APl"],
"box_proposal": [
"AR@100",
"ARs@100",
"ARm@100",
"ARl@100",
"AR@1000",
"ARs@1000",
"ARm@1000",
"ARl@1000",
],
"keypoints": ["AP", "AP50", "AP75", "APm", "APl"],
}
def __init__(self, *iou_types):
allowed_types = ("box_proposal", "bbox", "segm", "keypoints")
assert all(iou_type in allowed_types for iou_type in iou_types)
results = OrderedDict()
for iou_type in iou_types:
results[iou_type] = OrderedDict(
[(metric, -1) for metric in COCOResults.METRICS[iou_type]]
)
self.results = results
def update(self, coco_eval):
if coco_eval is None:
return
from pycocotools.cocoeval import COCOeval
assert isinstance(coco_eval, COCOeval)
s = coco_eval.stats
iou_type = coco_eval.params.iouType
res = self.results[iou_type]
metrics = COCOResults.METRICS[iou_type]
for idx, metric in enumerate(metrics):
res[metric] = s[idx]
def __repr__(self):
# TODO make it pretty
return repr(self.results)
def check_expected_results(results, expected_results, sigma_tol):
if not expected_results:
return
logger = logging.getLogger("maskrcnn_benchmark.inference")
for task, metric, (mean, std) in expected_results:
actual_val = results.results[task][metric]
lo = mean - sigma_tol * std
hi = mean + sigma_tol * std
ok = (lo < actual_val) and (actual_val < hi)
msg = (
"{} > {} sanity check (actual vs. expected): "
"{:.3f} vs. mean={:.4f}, std={:.4}, range=({:.4f}, {:.4f})"
).format(task, metric, actual_val, mean, std, lo, hi)
if not ok:
msg = "FAIL: " + msg
logger.error(msg)
else:
msg = "PASS: " + msg
logger.info(msg)
|