File size: 14,681 Bytes
128757a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import numpy as np
import random
import re
import torch
import pdb
import logging


def clean_name(name):
    name = re.sub(r"\(.*\)", "", name)
    name = re.sub(r"_", " ", name)
    name = re.sub(r"  ", " ", name)
    return name


def sanity_check_target_after_processing(target):
    assert(len(target.bbox) == len(target.extra_fields["boxes"]))


def convert_od_to_grounding_simple(

    target, 

    image_id, 

    ind_to_class, 

    disable_shuffle=True, 

    add_detection_prompt=False, 

    separation_tokens=" ",

    caption_prompt=None):
    """

    Convert object detection data into grounding data format, on the fly.

    ind_to_class: {0: "__background__", 1 : "person" ...}, contiguous id

    """

    def generate_sentence_from_labels(positive_label_list, negative_label_list, disable_shuffle=True):
        label_to_positions = {}
        label_list = negative_label_list + positive_label_list
        if not disable_shuffle:
            random.shuffle(label_list)
            assert (caption_prompt is None), "Should not specify caption_prompt when shuffle is enabled!!"  # avoid potential bug

        if add_detection_prompt:
            pheso_caption = "object detection : "
        else:
            pheso_caption = ""
        

        for index, label in enumerate(label_list):
            if caption_prompt is not None:
                pheso_caption += caption_prompt[index]['prefix']

            start_index = len(pheso_caption)
            if caption_prompt is not None:
                pheso_caption += clean_name(caption_prompt[index]['name'])
            else:
                pheso_caption += clean_name(ind_to_class[label])  # NOTE: slight change...
            end_index = len(pheso_caption)

            if caption_prompt is not None:
                pheso_caption += caption_prompt[index]['suffix']

            # e.g.: pheso_caption = "cat dog", where cat is label 4, and dog is label 17
            # label_to_positions: {4: (0, 3), 17: (4, 7)}
            label_to_positions[label] = [start_index, end_index]

            if index != len(label_list) - 1:
                pheso_caption += separation_tokens

        return label_to_positions, pheso_caption

    label_list = list(sorted(ind_to_class.keys()))  # do not include the background
    label_to_positions, pheso_caption = generate_sentence_from_labels(
        positive_label_list=label_list,
        negative_label_list=[],
        disable_shuffle=disable_shuffle
    )

    new_target = []

    '''

    Convert into:

    {'area': 10506.0, 'iscrowd': 0, 'image_id': 571335, 'category_id': 1, 'id': 2999421, 'bbox': [221, 319, 103, 102], 'tokens_positive': [[0, 3]]} 

    tokens_positive is the char position

    '''
    areas = target.area()
    greenlight_span_for_masked_lm_objective = []
    for i in range(len(target)):
        new_target_i = {}
        new_target_i["area"] = areas[i]
        new_target_i["iscrowd"] = 0
        new_target_i["image_id"] = image_id
        new_target_i["category_id"] = target.extra_fields["labels"][i].item()
        new_target_i["id"] = None
        new_target_i['bbox'] = target.bbox[i].numpy().tolist()

        label_i = target.extra_fields["labels"][i].item()

        if label_i in label_to_positions:  # NOTE: Only add those that actually appear in the final caption
            new_target_i["tokens_positive"] = [label_to_positions[label_i]]
            new_target.append(new_target_i)
            greenlight_span_for_masked_lm_objective.append(label_to_positions[label_i])

    return new_target, pheso_caption, greenlight_span_for_masked_lm_objective


def check_for_positive_overflow(target, ind_to_class, tokenizer, max_seq_length=256):
    # NOTE: Only call this function for OD data; DO NOT USE IT FOR GROUNDING DATA
    # NOTE: called only in coco_dt

    # Check if we have too many positive labels
    # generate a caption by appending the positive labels
    positive_label_set = set()
    for i in range(len(target)):
        label_i = target.extra_fields["labels"][i].item()
        positive_label_set.add(label_i)
    positive_label_list = list(positive_label_set)

    # random shuffule so we can sample different annotations at different epochs
    random.shuffle(positive_label_list)

    kept_lables = []
    length = 0

    for index, label in enumerate(positive_label_list):

        label_text = clean_name(ind_to_class[label]) + ". " # "dog. "

        tokenized = tokenizer.tokenize(label_text)

        length += len(tokenized)

        if length > max_seq_length:
            break
        else:
            kept_lables.append(label)
    
    ## filter boxes
    keep_box_index = []
    for i in range(len(target)):
        label_i = target.extra_fields["labels"][i].item()
        if label_i in kept_lables:
            keep_box_index.append(i)
    
    keep_box_index = torch.LongTensor(keep_box_index)

    target = target[keep_box_index] ## filter boxes

    return target, length

    
def convert_object_detection_to_grounding_optimized_for_od(

        target,

        image_id,

        ind_to_class,

        disable_shuffle,

        add_detection_prompt,

        add_detection_prompt_advanced,

        random_sample_negative,

        control_probabilities,

        restricted_negative_list=None,

        separation_tokens=" ",

        max_num_labels=-1,

        max_seq_length=256,

        tokenizer=None,

        positive_caption_length=0

):
    '''

    ind_to_class: {0: "__background__", 1 : "person" ...}

    target:



    restricted_negative_list : for datasets with restricted negatives, sample only the negatives



    Convert object detection data into grounding data format, on the fly.



    Control options:

        1. add_detection_prompt: add "object detection : " to the front of the prompt

        2. num_negatives: randomly sampled negative classes

        3. num_positives: how many positives to keep (-1 means do not cut any)



    Probabilities to generate the control options:



        a. probability_one_negative: only give one negative class to mimic evaluation

        b. probability_one_positive: only give one positive class to mimic evaluation

        c. probability_full: add both all positive and all negatives

        d. other:

            randomly sample some negatives and some positives

            The below control options are independent of each other:

            - probability_random_negative: probability of randomly sample X negatives

            - probability_random_positive: probability of randomly sample some positives

    '''
    if restricted_negative_list is None:
        valid_negative_indexes = list(ind_to_class.keys())
    else:
        valid_negative_indexes = restricted_negative_list

    def generate_senetence_given_labels(

            positive_label_list,

            negative_label_list,

            prompt_engineer_version="v2",

            disable_shuffle=False,

            positive_question_probability=0.6,

            negative_question_probability=0.8,

            full_question_probability=0.5):

        '''

        v3: with simple prompt such as "there are", "are there?"

        v4: try to merge some are there / there are together, to avoid sequence being too long

        '''

        label_to_positions = {}

        assert (prompt_engineer_version == "v2")
        num_negatives = len(negative_label_list)
        num_positives = len(positive_label_list)
        label_list = negative_label_list + positive_label_list
        if not disable_shuffle:
            random.shuffle(label_list)

        if add_detection_prompt:
            if add_detection_prompt_advanced and (num_negatives == 0 or num_positives == 0) and not disable_shuffle:
                pheso_caption = "object detection query : "
            else:
                pheso_caption = "object detection : "
        else:
            pheso_caption = ""

        for index, label in enumerate(label_list):

            start_index = len(pheso_caption)

            pheso_caption += clean_name(ind_to_class[label])  # NOTE: slight change...
            end_index = len(pheso_caption)

            # e.g.: pheso_caption = "cat dog", where cat is label 4, and dog is label 17
            # label_to_positions: {4: (0, 3), 17: (4, 7)}
            label_to_positions[label] = [start_index, end_index]

            if index != len(label_list) - 1:
                pheso_caption += separation_tokens

        return label_to_positions, pheso_caption

    if disable_shuffle:
        label_list = list(sorted(ind_to_class.keys()))[1:]  # do not include the background
        label_to_positions, pheso_caption = generate_senetence_given_labels(
            positive_label_list=label_list,
            negative_label_list=[],
            disable_shuffle=True)
        # print(label_to_positions, pheso_caption)
    else:
        positive_label_set = set()
        for i in range(len(target)):
            label_i = target.extra_fields["labels"][i].item()
            positive_label_set.add(label_i)

        full_positive = len(positive_label_set)
        if max_num_labels <= 0:
            full_negative = random_sample_negative
        else:
            full_negative = max(min(max_num_labels-full_positive, random_sample_negative), 0)

        if full_negative > len(valid_negative_indexes):
            full_negative = len(valid_negative_indexes)

        num_negatives, num_positives = generate_control_options_given_probabilities(
            control_probabilities=control_probabilities,
            full_positive=full_positive,
            full_negative=full_negative)
        # num_positives not used
        

        # Keep some negatives
        negative_label_list = set()
        if num_negatives != -1:
            if num_negatives > len(valid_negative_indexes):
                num_negatives = len(valid_negative_indexes)
            for i in np.random.choice(valid_negative_indexes, size=num_negatives, replace=False):
                # label_sets.add(i)
                if i not in positive_label_set:
                    negative_label_list.add(i)

        # Keep all positives; ignoring num_positives
        positive_label_list = list(positive_label_set)
        random.shuffle(positive_label_list)

        negative_label_list = list(negative_label_list)  # e.g.: [17, 1, 13] where each number is the class name
        random.shuffle(negative_label_list)

        # Do a pre-screen. If we cannot afford this many negatives, we will sample less
        negative_max_length = max_seq_length - positive_caption_length
        screened_negative_label_list = []
        for negative_label in negative_label_list:
            label_text = clean_name(ind_to_class[negative_label]) + ". " # "dog. "

            tokenized = tokenizer.tokenize(label_text)
            
            negative_max_length -= len(tokenized)

            if negative_max_length > 0: 
                screened_negative_label_list.append(negative_label) # keep this negative
            else:
                break
        negative_label_list = screened_negative_label_list

        label_to_positions, pheso_caption = generate_senetence_given_labels(
            positive_label_list=positive_label_list,
            negative_label_list=negative_label_list)

    new_target = []

    '''

    Convert into:

    {'area': 10506.0, 'iscrowd': 0, 'image_id': 571335, 'category_id': 1, 'id': 2999421, 'bbox': [221, 319, 103, 102], 'tokens_positive': [[0, 3]]} 

    tokens_positive is the char position

    '''
    areas = target.area()
    greenlight_span_for_masked_lm_objective = []
    for i in range(len(target)):
        new_target_i = {}
        new_target_i["area"] = areas[i]
        new_target_i["iscrowd"] = 0
        new_target_i["image_id"] = image_id
        new_target_i["category_id"] = target.extra_fields["labels"][i].item()
        new_target_i["id"] = None
        new_target_i['bbox'] = target.bbox[i].numpy().tolist()

        label_i = target.extra_fields["labels"][i].item()
        new_target_i["original_od_label"] = label_i

        if label_i in label_to_positions:  # NOTE: Only add those that actually appear in the final caption
            new_target_i["tokens_positive"] = [label_to_positions[label_i]]
            new_target.append(new_target_i)
            greenlight_span_for_masked_lm_objective.append(label_to_positions[label_i])

    return new_target, pheso_caption, greenlight_span_for_masked_lm_objective, label_to_positions


def generate_control_options_given_probabilities(

        control_probabilities,

        full_positive,

        full_negative):
    
    # The function was originally designed to perform data augmentation by randomly dropping negative and positive classes. Later, we decided to only consider dropping negative classes. So the returned 'num_positives' by this function will be ignored.

    outer_prob = random.random()

    probability_one_negative = control_probabilities[0]
    probability_one_positive = control_probabilities[1]
    probability_full = control_probabilities[2]
    probability_drop_positive = control_probabilities[3]

    assert(probability_drop_positive == 0)

    if outer_prob < probability_one_negative:
        # a. probability_one_negative: only give one negative class to mimic evaluation (10%)
        num_negatives = 1
        num_positives = 0
    elif outer_prob < probability_one_positive + probability_one_negative:
        # b. probability_one_positive: only give one positive class to mimic evaluation (10%)
        num_negatives = 0
        num_positives = 1
    elif outer_prob < probability_full + probability_one_positive + probability_one_negative:
        # c. probability_full: add both all positive and all negatives (20%)
        num_negatives = full_negative
        num_positives = full_positive
    else:
        if random.random() < 1.0:  # - probability_random_negative: probability of randomly sample X negatives (100%)
            num_negatives = np.random.choice(max(1, full_negative)) + 1  # mininum 1
        else:
            num_negatives = full_negative  # Full

        if random.random() < probability_drop_positive:  #
            num_positives = np.random.choice(max(1, full_positive)) + 1
        else:
            num_positives = full_positive  # Full

    return num_negatives, num_positives