Spaces:
Runtime error
Runtime error
File size: 27,419 Bytes
128757a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 |
# A modification version from chainercv repository.
# (See https://github.com/chainer/chainercv/blob/master/chainercv/evaluations/eval_detection_voc.py)
from __future__ import division
import os
from collections import OrderedDict
import numpy as np
import torch
from maskrcnn_benchmark.structures.bounding_box import BoxList
from maskrcnn_benchmark.structures.boxlist_ops import boxlist_iou, getUnionBBox
# inspired from Detectron
def evaluate_box_proposals(
predictions, dataset, thresholds=None, area="all", limit=None
):
"""Evaluate detection proposal recall metrics. This function is a much
faster alternative to the official COCO API recall evaluation code. However,
it produces slightly different results.
"""
# Record max overlap value for each gt box
# Return vector of overlap values
areas = {
"all": 0,
"small": 1,
"medium": 2,
"large": 3,
"96-128": 4,
"128-256": 5,
"256-512": 6,
"512-inf": 7,
}
area_ranges = [
[0 ** 2, 1e5 ** 2], # all
[0 ** 2, 32 ** 2], # small
[32 ** 2, 96 ** 2], # medium
[96 ** 2, 1e5 ** 2], # large
[96 ** 2, 128 ** 2], # 96-128
[128 ** 2, 256 ** 2], # 128-256
[256 ** 2, 512 ** 2], # 256-512
[512 ** 2, 1e5 ** 2],
] # 512-inf
assert area in areas, "Unknown area range: {}".format(area)
area_range = area_ranges[areas[area]]
gt_overlaps = []
num_pos = 0
for image_id, prediction in enumerate(predictions):
img_info = dataset.get_img_info(image_id)
image_width = img_info["width"]
image_height = img_info["height"]
prediction = prediction.resize((image_width, image_height))
# deal with ground truth
gt_boxes = dataset.get_groundtruth(image_id)
# filter out the field "relations"
gt_boxes = gt_boxes.copy_with_fields(['attributes', 'labels'])
gt_areas = gt_boxes.area()
if len(gt_boxes) == 0:
continue
valid_gt_inds = (gt_areas >= area_range[0]) & (gt_areas <= area_range[1])
gt_boxes = gt_boxes[valid_gt_inds]
num_pos += len(gt_boxes)
if len(gt_boxes) == 0:
continue
# sort predictions in descending order
# TODO maybe remove this and make it explicit in the documentation
_gt_overlaps = torch.zeros(len(gt_boxes))
if len(prediction) == 0:
gt_overlaps.append(_gt_overlaps)
continue
if "objectness" in prediction.extra_fields:
inds = prediction.get_field("objectness").sort(descending=True)[1]
elif "scores" in prediction.extra_fields:
inds = prediction.get_field("scores").sort(descending=True)[1]
else:
raise ValueError("Neither objectness nor scores is in the extra_fields!")
prediction = prediction[inds]
if limit is not None and len(prediction) > limit:
prediction = prediction[:limit]
overlaps = boxlist_iou(prediction, gt_boxes)
for j in range(min(len(prediction), len(gt_boxes))):
# find which proposal box maximally covers each gt box
# and get the iou amount of coverage for each gt box
max_overlaps, argmax_overlaps = overlaps.max(dim=0)
# find which gt box is 'best' covered (i.e. 'best' = most iou)
gt_ovr, gt_ind = max_overlaps.max(dim=0)
assert gt_ovr >= 0
# find the proposal box that covers the best covered gt box
box_ind = argmax_overlaps[gt_ind]
# record the iou coverage of this gt box
_gt_overlaps[j] = overlaps[box_ind, gt_ind]
assert _gt_overlaps[j] == gt_ovr
# mark the proposal box and the gt box as used
overlaps[box_ind, :] = -1
overlaps[:, gt_ind] = -1
# append recorded iou coverage level
gt_overlaps.append(_gt_overlaps)
gt_overlaps = torch.cat(gt_overlaps, dim=0)
gt_overlaps, _ = torch.sort(gt_overlaps)
if thresholds is None:
step = 0.05
thresholds = torch.arange(0.5, 0.95 + 1e-5, step, dtype=torch.float32)
recalls = torch.zeros_like(thresholds)
# compute recall for each iou threshold
for i, t in enumerate(thresholds):
recalls[i] = (gt_overlaps >= t).float().sum() / float(num_pos)
# ar = 2 * np.trapz(recalls, thresholds)
ar = recalls.mean()
return {
"ar": ar,
"recalls": recalls,
"thresholds": thresholds,
"gt_overlaps": gt_overlaps,
"num_pos": num_pos,
}
class VGResults(object):
METRICS = {
"bbox": ["AP",],
"segm": ["AP",],
"box_proposal": ["AR@100",],
}
def __init__(self, iou_type, value):
allowed_types = ("box_proposal", "bbox", "segm", "keypoints")
assert iou_type in allowed_types
results = OrderedDict()
results[iou_type] = OrderedDict([(metric, value) for metric in VGResults.METRICS[iou_type]])
self.results = results
def do_vg_evaluation(dataset, predictions, output_folder, box_only, eval_attributes, logger, save_predictions=True):
# TODO need to make the use_07_metric format available
# for the user to choose
# we use int for box_only. 0: False, 1: box for RPN, 2: box for object detection,
if box_only:
if box_only == 1:
limits = [100, 1000]
elif box_only == 2:
limits = [36, 99]
else:
raise ValueError("box_only can be either 0/1/2, but get {0}".format(box_only))
areas = {"all": "", "small": "s", "medium": "m", "large": "l"}
result = {}
for area, suffix in areas.items():
for limit in limits:
logger.info("Evaluating bbox proposals@{:d}".format(limit))
stats = evaluate_box_proposals(
predictions, dataset, area=area, limit=limit
)
key_ar = "AR{}@{:d}".format(suffix, limit)
key_num_pos = "num_pos{}@{:d}".format(suffix, limit)
result[key_num_pos] = stats["num_pos"]
result[key_ar] = stats["ar"].item()
key_recalls = "Recalls{}@{:d}".format(suffix, limit)
# result[key_recalls] = stats["recalls"]
print(key_recalls, stats["recalls"])
print(key_ar, "ar={:.4f}".format(result[key_ar]))
print(key_num_pos, "num_pos={:d}".format(result[key_num_pos]))
if limit != 1000 and dataset.relation_on:
# if True:
# relation @ 1000 (all and large) takes about 2 hs to compute
# relation pair evaluation
logger.info("Evaluating relation proposals@{:d}".format(limit))
stats = evaluate_box_proposals_for_relation(
predictions, dataset, area=area, limit=limit
)
key_ar = "AR{}@{:d}_for_relation".format(suffix, limit)
key_num_pos = "num_pos{}@{:d}_for_relation".format(suffix, limit)
result[key_num_pos] = stats["num_pos"]
result[key_ar] = stats["ar"].item()
# key_recalls = "Recalls{}@{:d}_for_relation".format(suffix, limit)
# result[key_recalls] = stats["recalls"]
print(key_ar, "ar={:.4f}".format(result[key_ar]))
print(key_num_pos, "num_pos={:d}".format(result[key_num_pos]))
logger.info(result)
# check_expected_results(result, expected_results, expected_results_sigma_tol)
if output_folder and save_predictions:
if box_only == 1:
torch.save(result, os.path.join(output_folder, "rpn_proposals.pth"))
elif box_only == 2:
torch.save(result, os.path.join(output_folder, "box_proposals.pth"))
else:
raise ValueError("box_only can be either 0/1/2, but get {0}".format(box_only))
return VGResults('box_proposal', result["AR@100"]), {"box_proposal": result}
pred_boxlists = []
gt_boxlists = []
for image_id, prediction in enumerate(predictions):
img_info = dataset.get_img_info(image_id)
if len(prediction) == 0:
continue
image_width = img_info["width"]
image_height = img_info["height"]
prediction = prediction.resize((image_width, image_height))
pred_boxlists.append(prediction)
gt_boxlist = dataset.get_groundtruth(image_id)
gt_boxlists.append(gt_boxlist)
if eval_attributes:
classes = dataset.attributes
else:
classes = dataset.classes
result = eval_detection_voc(
pred_boxlists=pred_boxlists,
gt_boxlists=gt_boxlists,
classes=classes,
iou_thresh=0.5,
eval_attributes=eval_attributes,
use_07_metric=False,
)
result_str = "mAP: {:.4f}\n".format(result["map"])
logger.info(result_str)
for i, ap in enumerate(result["ap"]):
# if i == 0: # skip background
# continue
# we skipped background in result['ap'], so we need to use i+1
if eval_attributes:
result_str += "{:<16}: {:.4f}\n".format(
dataset.map_attribute_id_to_attribute_name(i+1), ap
)
else:
result_str += "{:<16}: {:.4f}\n".format(
dataset.map_class_id_to_class_name(i+1), ap
)
# return mAP and weighted mAP
vg_result = VGResults('bbox', result["map"])
if eval_attributes:
if output_folder and save_predictions:
with open(os.path.join(output_folder, "result_attr.txt"), "w") as fid:
fid.write(result_str)
return vg_result, {"attr": {"map": result["map"], "weighted map": result["weighted map"]}}
else:
if output_folder and save_predictions:
with open(os.path.join(output_folder, "result_obj.txt"), "w") as fid:
fid.write(result_str)
return vg_result, {"obj": {"map": result["map"], "weighted map": result["weighted map"]}},
def eval_detection_voc(pred_boxlists, gt_boxlists, classes, iou_thresh=0.5, eval_attributes=False, use_07_metric=False):
"""Evaluate on voc dataset.
Args:
pred_boxlists(list[BoxList]): pred boxlist, has labels and scores fields.
gt_boxlists(list[BoxList]): ground truth boxlist, has labels field.
iou_thresh: iou thresh
use_07_metric: boolean
Returns:
dict represents the results
"""
assert len(gt_boxlists) == len(
pred_boxlists
), "Length of gt and pred lists need to be same."
aps = []
nposs = []
thresh = []
for i, classname in enumerate(classes):
if classname == "__background__" or classname == "__no_attribute__":
continue
rec, prec, ap, scores, npos = calc_detection_voc_prec_rec(pred_boxlists=pred_boxlists, gt_boxlists=gt_boxlists, \
classindex=i, iou_thresh=iou_thresh,
eval_attributes=eval_attributes,
use_07_metric=use_07_metric)
# Determine per class detection thresholds that maximise f score
# if npos > 1:
if npos > 1 and type(scores) != np.int:
f = np.nan_to_num((prec * rec) / (prec + rec))
thresh += [scores[np.argmax(f)]]
else:
thresh += [0]
aps += [ap]
nposs += [float(npos)]
# print('AP for {} = {:.4f} (npos={:,})'.format(classname, ap, npos))
# if pickle:
# with open(os.path.join(output_dir, cls + '_pr.pkl'), 'w') as f:
# cPickle.dump({'rec': rec, 'prec': prec, 'ap': ap,
# 'scores': scores, 'npos':npos}, f)
# Set thresh to mean for classes with poor results
thresh = np.array(thresh)
avg_thresh = np.mean(thresh[thresh != 0])
thresh[thresh == 0] = avg_thresh
# if eval_attributes:
# filename = 'attribute_thresholds_' + self._image_set + '.txt'
# else:
# filename = 'object_thresholds_' + self._image_set + '.txt'
# path = os.path.join(output_dir, filename)
# with open(path, 'wt') as f:
# for i, cls in enumerate(classes[1:]):
# f.write('{:s} {:.3f}\n'.format(cls, thresh[i]))
weights = np.array(nposs)
weights /= weights.sum()
# print('Mean AP = {:.4f}'.format(np.mean(aps)))
# print('Weighted Mean AP = {:.4f}'.format(np.average(aps, weights=weights)))
# print('Mean Detection Threshold = {:.3f}'.format(avg_thresh))
# print('~~~~~~~~')
# print('Results:')
# for ap, npos in zip(aps, nposs):
# print('{:.3f}\t{:.3f}'.format(ap, npos))
# print('{:.3f}'.format(np.mean(aps)))
# print('~~~~~~~~')
# print('')
# print('--------------------------------------------------------------')
# print('Results computed with the **unofficial** PASCAL VOC Python eval code.')
# print('--------------------------------------------------------------')
# pdb.set_trace()
return {"ap": aps, "map": np.mean(aps), "weighted map": np.average(aps, weights=weights)}
def calc_detection_voc_prec_rec(pred_boxlists, gt_boxlists, classindex, iou_thresh=0.5, eval_attributes=False,
use_07_metric=False):
"""Calculate precision and recall based on evaluation code of PASCAL VOC.
This function calculates precision and recall of
predicted bounding boxes obtained from a dataset which has :math:`N`
images.
The code is based on the evaluation code used in PASCAL VOC Challenge.
"""
class_recs = {}
npos = 0
image_ids = []
confidence = []
BB = []
for image_index, (gt_boxlist, pred_boxlist) in enumerate(zip(gt_boxlists, pred_boxlists)):
pred_bbox = pred_boxlist.bbox.numpy()
gt_bbox = gt_boxlist.bbox.numpy()
if eval_attributes:
gt_label = gt_boxlist.get_field("attributes").numpy()
pred_label = pred_boxlist.get_field("attr_labels").numpy()
pred_score = pred_boxlist.get_field("attr_scores").numpy()
else:
gt_label = gt_boxlist.get_field("labels").numpy()
pred_label = pred_boxlist.get_field("labels").numpy()
pred_score = pred_boxlist.get_field("scores").numpy()
# get the ground truth information for this class
if eval_attributes:
gt_mask_l = np.array([classindex in i for i in gt_label])
else:
gt_mask_l = gt_label == classindex
gt_bbox_l = gt_bbox[gt_mask_l]
gt_difficult_l = np.zeros(gt_bbox_l.shape[0], dtype=bool)
det = [False] * gt_bbox_l.shape[0]
npos = npos + sum(~gt_difficult_l)
class_recs[image_index] = {'bbox': gt_bbox_l,
'difficult': gt_difficult_l,
'det': det}
# prediction output for each class
# pdb.set_trace()
if eval_attributes:
pred_mask_l = np.logical_and(pred_label == classindex, np.not_equal(pred_score, 0.0)).nonzero()
pred_bbox_l = pred_bbox[pred_mask_l[0]]
pred_score_l = pred_score[pred_mask_l]
else:
pred_mask_l = pred_label == classindex
pred_bbox_l = pred_bbox[pred_mask_l]
pred_score_l = pred_score[pred_mask_l]
for bbox_tmp, score_tmp in zip(pred_bbox_l, pred_score_l):
image_ids.append(image_index)
confidence.append(float(score_tmp))
BB.append([float(z) for z in bbox_tmp])
if npos == 0:
# No ground truth examples
return 0, 0, 0, 0, npos
if len(confidence) == 0:
# No detection examples
return 0, 0, 0, 0, npos
confidence = np.array(confidence)
BB = np.array(BB)
# sort by confidence
sorted_ind = np.argsort(-confidence)
sorted_scores = -np.sort(-confidence)
BB = BB[sorted_ind, :]
image_ids = [image_ids[x] for x in sorted_ind]
# go down dets and mark TPs and FPs
nd = len(image_ids)
tp = np.zeros(nd)
fp = np.zeros(nd)
for d in range(nd):
R = class_recs[image_ids[d]]
bb = BB[d, :].astype(float)
ovmax = -np.inf
BBGT = R['bbox'].astype(float)
if BBGT.size > 0:
# compute overlaps
# intersection
ixmin = np.maximum(BBGT[:, 0], bb[0])
iymin = np.maximum(BBGT[:, 1], bb[1])
ixmax = np.minimum(BBGT[:, 2], bb[2])
iymax = np.minimum(BBGT[:, 3], bb[3])
iw = np.maximum(ixmax - ixmin + 1., 0.)
ih = np.maximum(iymax - iymin + 1., 0.)
inters = iw * ih
# union
uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) +
(BBGT[:, 2] - BBGT[:, 0] + 1.) *
(BBGT[:, 3] - BBGT[:, 1] + 1.) - inters)
overlaps = inters / uni
ovmax = np.max(overlaps)
jmax = np.argmax(overlaps)
if ovmax > iou_thresh:
if not R['difficult'][jmax]:
if not R['det'][jmax]:
tp[d] = 1.
R['det'][jmax] = 1
else:
fp[d] = 1.
else:
fp[d] = 1.
# compute precision recall
fp = np.cumsum(fp)
tp = np.cumsum(tp)
rec = tp / float(npos)
# avoid divide by zero in case the first detection matches a difficult
# ground truth
prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
ap = voc_ap(rec, prec, use_07_metric)
return rec, prec, ap, sorted_scores, npos
def voc_ap(rec, prec, use_07_metric=False):
""" ap = voc_ap(rec, prec, [use_07_metric])
Compute VOC AP given precision and recall.
If use_07_metric is true, uses the
VOC 07 11 point method (default:False).
"""
if use_07_metric:
# 11 point metric
ap = 0.
for t in np.arange(0., 1.1, 0.1):
if np.sum(rec >= t) == 0:
p = 0
else:
p = np.max(prec[rec >= t])
ap = ap + p / 11.
else:
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.], rec, [1.]))
mpre = np.concatenate(([0.], prec, [0.]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def calc_detection_voc_ap(prec, rec, use_07_metric=False):
"""Calculate average precisions based on evaluation code of PASCAL VOC.
This function calculates average precisions
from given precisions and recalls.
The code is based on the evaluation code used in PASCAL VOC Challenge.
Args:
prec (list of numpy.array): A list of arrays.
:obj:`prec[l]` indicates precision for class :math:`l`.
If :obj:`prec[l]` is :obj:`None`, this function returns
:obj:`numpy.nan` for class :math:`l`.
rec (list of numpy.array): A list of arrays.
:obj:`rec[l]` indicates recall for class :math:`l`.
If :obj:`rec[l]` is :obj:`None`, this function returns
:obj:`numpy.nan` for class :math:`l`.
use_07_metric (bool): Whether to use PASCAL VOC 2007 evaluation metric
for calculating average precision. The default value is
:obj:`False`.
Returns:
~numpy.ndarray:
This function returns an array of average precisions.
The :math:`l`-th value corresponds to the average precision
for class :math:`l`. If :obj:`prec[l]` or :obj:`rec[l]` is
:obj:`None`, the corresponding value is set to :obj:`numpy.nan`.
"""
n_fg_class = len(prec)
ap = np.empty(n_fg_class)
for l in range(n_fg_class):
if prec[l] is None or rec[l] is None:
ap[l] = np.nan
continue
if use_07_metric:
# 11 point metric
ap[l] = 0
for t in np.arange(0.0, 1.1, 0.1):
if np.sum(rec[l] >= t) == 0:
p = 0
else:
p = np.max(np.nan_to_num(prec[l])[rec[l] >= t])
ap[l] += p / 11
else:
# correct AP calculation
# first append sentinel values at the end
mpre = np.concatenate(([0], np.nan_to_num(prec[l]), [0]))
mrec = np.concatenate(([0], rec[l], [1]))
mpre = np.maximum.accumulate(mpre[::-1])[::-1]
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap[l] = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
# inspired from Detectron
def evaluate_box_proposals_for_relation(
predictions, dataset, thresholds=None, area="all", limit=None
):
"""Evaluate how many relation pairs can be captured by the proposed boxes.
"""
# Record max overlap value for each gt box
# Return vector of overlap values
areas = {
"all": 0,
"small": 1,
"medium": 2,
"large": 3,
"96-128": 4,
"128-256": 5,
"256-512": 6,
"512-inf": 7,
}
area_ranges = [
[0 ** 2, 1e5 ** 2], # all
[0 ** 2, 32 ** 2], # small
[32 ** 2, 96 ** 2], # medium
[96 ** 2, 1e5 ** 2], # large
[96 ** 2, 128 ** 2], # 96-128
[128 ** 2, 256 ** 2], # 128-256
[256 ** 2, 512 ** 2], # 256-512
[512 ** 2, 1e5 ** 2],
] # 512-inf
assert area in areas, "Unknown area range: {}".format(area)
area_range = area_ranges[areas[area]]
gt_overlaps = []
num_pos = 0
for image_id, prediction in enumerate(predictions):
img_info = dataset.get_img_info(image_id)
image_width = img_info["width"]
image_height = img_info["height"]
prediction = prediction.resize((image_width, image_height))
# deal with ground truth
gt_boxes = dataset.get_groundtruth(image_id)
# filter out the field "relation_labels"
gt_triplets = gt_boxes.get_field("relation_labels")
if len(gt_triplets) == 0:
continue
gt_boxes = gt_boxes.copy_with_fields(['attributes', 'labels'])
# get union bounding boxes (the box that cover both)
gt_relations = getUnionBBox(gt_boxes[gt_triplets[:, 0]], gt_boxes[gt_triplets[:, 1]], margin=0)
gt_relations.add_field('rel_classes', gt_triplets[:, 2])
# focus on the range interested
gt_relation_areas = gt_relations.area()
valid_gt_inds = (gt_relation_areas >= area_range[0]) & (gt_relation_areas <= area_range[1])
gt_relations = gt_relations[valid_gt_inds]
num_pos += len(gt_relations)
if len(gt_relations) == 0:
continue
# sort predictions in descending order and limit to the number we specify
# TODO maybe remove this and make it explicit in the documentation
_gt_overlaps = torch.zeros(len(gt_relations))
if len(prediction) == 0:
gt_overlaps.append(_gt_overlaps)
continue
if "objectness" in prediction.extra_fields:
inds = prediction.get_field("objectness").sort(descending=True)[1]
elif "scores" in prediction.extra_fields:
inds = prediction.get_field("scores").sort(descending=True)[1]
else:
raise ValueError("Neither objectness nor scores is in the extra_fields!")
prediction = prediction[inds]
if limit is not None and len(prediction) > limit:
prediction = prediction[:limit]
# get the predicted relation pairs
N = len(prediction)
map_x = np.arange(N)
map_y = np.arange(N)
map_x_g, map_y_g = np.meshgrid(map_x, map_y)
anchor_pairs = torch.from_numpy(np.vstack((map_y_g.ravel(), map_x_g.ravel())).transpose())
# remove diagonal pairs
keep = anchor_pairs[:, 0] != anchor_pairs[:, 1]
anchor_pairs = anchor_pairs[keep]
# get anchor_relations
# anchor_relations = getUnionBBox(prediction[anchor_pairs[:,0]], prediction[anchor_pairs[:,1]], margin=0)
if len(anchor_pairs) == 0:
continue
overlaps_sub = boxlist_iou(prediction[anchor_pairs[:, 0]], gt_boxes[gt_triplets[valid_gt_inds, 0]])
overlaps_obj = boxlist_iou(prediction[anchor_pairs[:, 1]], gt_boxes[gt_triplets[valid_gt_inds, 1]])
overlaps = torch.min(overlaps_sub, overlaps_obj)
for j in range(min(len(anchor_pairs), len(gt_relations))):
# find which proposal box maximally covers each gt box
# and get the iou amount of coverage for each gt box
max_overlaps, argmax_overlaps = overlaps.max(dim=0)
# find which gt box is 'best' covered (i.e. 'best' = most iou)
gt_ovr, gt_ind = max_overlaps.max(dim=0)
assert gt_ovr >= 0
# find the proposal pair that covers the best covered gt pair
pair_ind = argmax_overlaps[gt_ind]
# record the co-iou coverage of this gt pair
_gt_overlaps[j] = overlaps[pair_ind, gt_ind]
assert _gt_overlaps[j] == gt_ovr
# mark the proposal pair and the gt pair as used
overlaps[pair_ind, :] = -1
overlaps[:, gt_ind] = -1
# append recorded iou coverage level
gt_overlaps.append(_gt_overlaps)
gt_overlaps = torch.cat(gt_overlaps, dim=0)
gt_overlaps, _ = torch.sort(gt_overlaps)
if thresholds is None:
step = 0.05
thresholds = torch.arange(0.5, 0.95 + 1e-5, step, dtype=torch.float32)
recalls = torch.zeros_like(thresholds)
# compute recall for each iou threshold
for i, t in enumerate(thresholds):
recalls[i] = (gt_overlaps >= t).float().sum() / float(num_pos)
# ar = 2 * np.trapz(recalls, thresholds)
ar = recalls.mean()
return {
"ar": ar,
"recalls": recalls,
"thresholds": thresholds,
"gt_overlaps": gt_overlaps,
"num_pos": num_pos,
}
|