Spaces:
Runtime error
Runtime error
File size: 38,463 Bytes
128757a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 |
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import copy
import datetime
import json
import os
from collections import OrderedDict, defaultdict
import numpy as np
import pycocotools.mask as mask_util
import torch
import torch._six
import maskrcnn_benchmark.utils.mdetr_dist as dist
from maskrcnn_benchmark.utils.mdetr_dist import all_gather
from .lvis import LVIS
def merge(img_ids, eval_imgs):
all_img_ids = all_gather(img_ids)
all_eval_imgs = all_gather(eval_imgs)
merged_img_ids = []
for p in all_img_ids:
merged_img_ids.extend(p)
merged_eval_imgs = []
for p in all_eval_imgs:
merged_eval_imgs.append(p)
merged_img_ids = np.array(merged_img_ids)
merged_eval_imgs = np.concatenate(merged_eval_imgs, 2)
# keep only unique (and in sorted order) images
merged_img_ids, idx = np.unique(merged_img_ids, return_index=True)
merged_eval_imgs = merged_eval_imgs[..., idx]
return merged_img_ids, merged_eval_imgs
#################################################################
# From LVIS, with following changes:
# * fixed LVISEval constructor to accept empty dt
# * Removed logger
# * LVIS results supports numpy inputs
#################################################################
class Params:
def __init__(self, iou_type):
"""Params for LVIS evaluation API."""
self.img_ids = []
self.cat_ids = []
# np.arange causes trouble. the data point on arange is slightly
# larger than the true value
self.iou_thrs = np.linspace(0.5, 0.95, int(np.round((0.95 - 0.5) / 0.05)) + 1, endpoint=True)
self.rec_thrs = np.linspace(0.0, 1.00, int(np.round((1.00 - 0.0) / 0.01)) + 1, endpoint=True)
self.max_dets = 300
self.area_rng = [
[0 ** 2, 1e5 ** 2],
[0 ** 2, 32 ** 2],
[32 ** 2, 96 ** 2],
[96 ** 2, 1e5 ** 2],
]
self.area_rng_lbl = ["all", "small", "medium", "large"]
self.use_cats = 1
# We bin categories in three bins based how many images of the training
# set the category is present in.
# r: Rare : < 10
# c: Common : >= 10 and < 100
# f: Frequent: >= 100
self.img_count_lbl = ["r", "c", "f"]
self.iou_type = iou_type
class LVISResults(LVIS):
def __init__(self, lvis_gt, results, max_dets=300):
"""Constructor for LVIS results.
Args:
lvis_gt (LVIS class instance, or str containing path of
annotation file)
results (str containing path of result file or a list of dicts)
max_dets (int): max number of detections per image. The official
value of max_dets for LVIS is 300.
"""
super(LVISResults, self).__init__()
assert isinstance(lvis_gt, LVIS)
self.dataset["images"] = [img for img in lvis_gt.dataset["images"]]
if isinstance(results, str):
result_anns = self._load_json(results)
elif type(results) == np.ndarray:
result_anns = self.loadNumpyAnnotations(results)
else:
result_anns = results
if max_dets >= 0:
result_anns = self.limit_dets_per_image(result_anns, max_dets)
if len(result_anns) > 0 and "bbox" in result_anns[0]:
self.dataset["categories"] = copy.deepcopy(lvis_gt.dataset["categories"])
for id, ann in enumerate(result_anns):
x1, y1, w, h = ann["bbox"]
x2 = x1 + w
y2 = y1 + h
if "segmentation" not in ann:
ann["segmentation"] = [[x1, y1, x1, y2, x2, y2, x2, y1]]
ann["area"] = w * h
ann["id"] = id + 1
elif len(result_anns) > 0 and "segmentation" in result_anns[0]:
self.dataset["categories"] = copy.deepcopy(lvis_gt.dataset["categories"])
for id, ann in enumerate(result_anns):
# Only support compressed RLE format as segmentation results
ann["area"] = mask_util.area(ann["segmentation"])
if "bbox" not in ann:
ann["bbox"] = mask_util.toBbox(ann["segmentation"])
ann["id"] = id + 1
self.dataset["annotations"] = result_anns
self._create_index()
# #FIXME: disabling this check for now
# img_ids_in_result = [ann["image_id"] for ann in result_anns]
# assert set(img_ids_in_result) == (
# set(img_ids_in_result) & set(self.get_img_ids())
# ), "Results do not correspond to current LVIS set."
def limit_dets_per_image(self, anns, max_dets):
img_ann = defaultdict(list)
for ann in anns:
img_ann[ann["image_id"]].append(ann)
for img_id, _anns in img_ann.items():
if len(_anns) <= max_dets:
continue
_anns = sorted(_anns, key=lambda ann: ann["score"], reverse=True)
img_ann[img_id] = _anns[:max_dets]
return [ann for anns in img_ann.values() for ann in anns]
def get_top_results(self, img_id, score_thrs):
ann_ids = self.get_ann_ids(img_ids=[img_id])
anns = self.load_anns(ann_ids)
return list(filter(lambda ann: ann["score"] > score_thrs, anns))
class LVISEval:
def __init__(self, lvis_gt, lvis_dt=None, iou_type="segm"):
"""Constructor for LVISEval.
Args:
lvis_gt (LVIS class instance, or str containing path of annotation file)
lvis_dt (LVISResult class instance, or str containing path of result file,
or list of dict)
iou_type (str): segm or bbox evaluation
"""
if iou_type not in ["bbox", "segm"]:
raise ValueError("iou_type: {} is not supported.".format(iou_type))
if isinstance(lvis_gt, LVIS):
self.lvis_gt = lvis_gt
elif isinstance(lvis_gt, str):
self.lvis_gt = LVIS(lvis_gt)
else:
raise TypeError("Unsupported type {} of lvis_gt.".format(lvis_gt))
if isinstance(lvis_dt, LVISResults):
self.lvis_dt = lvis_dt
elif isinstance(lvis_dt, (str, list)):
self.lvis_dt = LVISResults(self.lvis_gt, lvis_dt)
elif lvis_dt is not None:
raise TypeError("Unsupported type {} of lvis_dt.".format(lvis_dt))
# per-image per-category evaluation results
self.eval_imgs = defaultdict(list)
self.eval = {} # accumulated evaluation results
self._gts = defaultdict(list) # gt for evaluation
self._dts = defaultdict(list) # dt for evaluation
self.params = Params(iou_type=iou_type) # parameters
self.results = OrderedDict()
self.stats = []
self.ious = {} # ious between all gts and dts
self.params.img_ids = sorted(self.lvis_gt.get_img_ids())
self.params.cat_ids = sorted(self.lvis_gt.get_cat_ids())
def _to_mask(self, anns, lvis):
for ann in anns:
rle = lvis.ann_to_rle(ann)
ann["segmentation"] = rle
def _prepare(self):
"""Prepare self._gts and self._dts for evaluation based on params."""
cat_ids = self.params.cat_ids if self.params.cat_ids else None
gts = self.lvis_gt.load_anns(self.lvis_gt.get_ann_ids(img_ids=self.params.img_ids, cat_ids=cat_ids))
dts = self.lvis_dt.load_anns(self.lvis_dt.get_ann_ids(img_ids=self.params.img_ids, cat_ids=cat_ids))
# convert ground truth to mask if iou_type == 'segm'
if self.params.iou_type == "segm":
self._to_mask(gts, self.lvis_gt)
self._to_mask(dts, self.lvis_dt)
# set ignore flag
for gt in gts:
if "ignore" not in gt:
gt["ignore"] = 0
for gt in gts:
self._gts[gt["image_id"], gt["category_id"]].append(gt)
# For federated dataset evaluation we will filter out all dt for an
# image which belong to categories not present in gt and not present in
# the negative list for an image. In other words detector is not penalized
# for categories about which we don't have gt information about their
# presence or absence in an image.
img_data = self.lvis_gt.load_imgs(ids=self.params.img_ids)
# per image map of categories not present in image
img_nl = {d["id"]: d["neg_category_ids"] for d in img_data}
# per image list of categories present in image
img_pl = defaultdict(set)
for ann in gts:
img_pl[ann["image_id"]].add(ann["category_id"])
# per image map of categoires which have missing gt. For these
# categories we don't penalize the detector for flase positives.
self.img_nel = {d["id"]: d["not_exhaustive_category_ids"] for d in img_data}
for dt in dts:
img_id, cat_id = dt["image_id"], dt["category_id"]
if cat_id not in img_nl[img_id] and cat_id not in img_pl[img_id]:
continue
self._dts[img_id, cat_id].append(dt)
self.freq_groups = self._prepare_freq_group()
def _prepare_freq_group(self):
freq_groups = [[] for _ in self.params.img_count_lbl]
cat_data = self.lvis_gt.load_cats(self.params.cat_ids)
for idx, _cat_data in enumerate(cat_data):
frequency = _cat_data["frequency"]
freq_groups[self.params.img_count_lbl.index(frequency)].append(idx)
return freq_groups
def evaluate(self):
"""
Run per image evaluation on given images and store results
(a list of dict) in self.eval_imgs.
"""
self.params.img_ids = list(np.unique(self.params.img_ids))
if self.params.use_cats:
cat_ids = self.params.cat_ids
else:
cat_ids = [-1]
self._prepare()
self.ious = {
(img_id, cat_id): self.compute_iou(img_id, cat_id) for img_id in self.params.img_ids for cat_id in cat_ids
}
# loop through images, area range, max detection number
self.eval_imgs = [
self.evaluate_img(img_id, cat_id, area_rng)
for cat_id in cat_ids
for area_rng in self.params.area_rng
for img_id in self.params.img_ids
]
def _get_gt_dt(self, img_id, cat_id):
"""Create gt, dt which are list of anns/dets. If use_cats is true
only anns/dets corresponding to tuple (img_id, cat_id) will be
used. Else, all anns/dets in image are used and cat_id is not used.
"""
if self.params.use_cats:
gt = self._gts[img_id, cat_id]
dt = self._dts[img_id, cat_id]
else:
gt = [_ann for _cat_id in self.params.cat_ids for _ann in self._gts[img_id, cat_id]]
dt = [_ann for _cat_id in self.params.cat_ids for _ann in self._dts[img_id, cat_id]]
return gt, dt
def compute_iou(self, img_id, cat_id):
gt, dt = self._get_gt_dt(img_id, cat_id)
if len(gt) == 0 and len(dt) == 0:
return []
# Sort detections in decreasing order of score.
idx = np.argsort([-d["score"] for d in dt], kind="mergesort")
dt = [dt[i] for i in idx]
iscrowd = [int(False)] * len(gt)
if self.params.iou_type == "segm":
ann_type = "segmentation"
elif self.params.iou_type == "bbox":
ann_type = "bbox"
else:
raise ValueError("Unknown iou_type for iou computation.")
gt = [g[ann_type] for g in gt]
dt = [d[ann_type] for d in dt]
# compute iou between each dt and gt region
# will return array of shape len(dt), len(gt)
ious = mask_util.iou(dt, gt, iscrowd)
return ious
def evaluate_img(self, img_id, cat_id, area_rng):
"""Perform evaluation for single category and image."""
gt, dt = self._get_gt_dt(img_id, cat_id)
if len(gt) == 0 and len(dt) == 0:
return None
# Add another filed _ignore to only consider anns based on area range.
for g in gt:
if g["ignore"] or (g["area"] < area_rng[0] or g["area"] > area_rng[1]):
g["_ignore"] = 1
else:
g["_ignore"] = 0
# Sort gt ignore last
gt_idx = np.argsort([g["_ignore"] for g in gt], kind="mergesort")
gt = [gt[i] for i in gt_idx]
# Sort dt highest score first
dt_idx = np.argsort([-d["score"] for d in dt], kind="mergesort")
dt = [dt[i] for i in dt_idx]
# load computed ious
ious = self.ious[img_id, cat_id][:, gt_idx] if len(self.ious[img_id, cat_id]) > 0 else self.ious[img_id, cat_id]
num_thrs = len(self.params.iou_thrs)
num_gt = len(gt)
num_dt = len(dt)
# Array to store the "id" of the matched dt/gt
gt_m = np.zeros((num_thrs, num_gt))
dt_m = np.zeros((num_thrs, num_dt))
gt_ig = np.array([g["_ignore"] for g in gt])
dt_ig = np.zeros((num_thrs, num_dt))
for iou_thr_idx, iou_thr in enumerate(self.params.iou_thrs):
if len(ious) == 0:
break
for dt_idx, _dt in enumerate(dt):
iou = min([iou_thr, 1 - 1e-10])
# information about best match so far (m=-1 -> unmatched)
# store the gt_idx which matched for _dt
m = -1
for gt_idx, _ in enumerate(gt):
# if this gt already matched continue
if gt_m[iou_thr_idx, gt_idx] > 0:
continue
# if _dt matched to reg gt, and on ignore gt, stop
if m > -1 and gt_ig[m] == 0 and gt_ig[gt_idx] == 1:
break
# continue to next gt unless better match made
if ious[dt_idx, gt_idx] < iou:
continue
# if match successful and best so far, store appropriately
iou = ious[dt_idx, gt_idx]
m = gt_idx
# No match found for _dt, go to next _dt
if m == -1:
continue
# if gt to ignore for some reason update dt_ig.
# Should not be used in evaluation.
dt_ig[iou_thr_idx, dt_idx] = gt_ig[m]
# _dt match found, update gt_m, and dt_m with "id"
dt_m[iou_thr_idx, dt_idx] = gt[m]["id"]
gt_m[iou_thr_idx, m] = _dt["id"]
# For LVIS we will ignore any unmatched detection if that category was
# not exhaustively annotated in gt.
dt_ig_mask = [
d["area"] < area_rng[0] or d["area"] > area_rng[1] or d["category_id"] in self.img_nel[d["image_id"]]
for d in dt
]
dt_ig_mask = np.array(dt_ig_mask).reshape((1, num_dt)) # 1 X num_dt
dt_ig_mask = np.repeat(dt_ig_mask, num_thrs, 0) # num_thrs X num_dt
# Based on dt_ig_mask ignore any unmatched detection by updating dt_ig
dt_ig = np.logical_or(dt_ig, np.logical_and(dt_m == 0, dt_ig_mask))
# store results for given image and category
return {
"image_id": img_id,
"category_id": cat_id,
"area_rng": area_rng,
"dt_ids": [d["id"] for d in dt],
"gt_ids": [g["id"] for g in gt],
"dt_matches": dt_m,
"gt_matches": gt_m,
"dt_scores": [d["score"] for d in dt],
"gt_ignore": gt_ig,
"dt_ignore": dt_ig,
}
def accumulate(self):
"""Accumulate per image evaluation results and store the result in
self.eval.
"""
if not self.eval_imgs:
print("Warning: Please run evaluate first.")
if self.params.use_cats:
cat_ids = self.params.cat_ids
else:
cat_ids = [-1]
num_thrs = len(self.params.iou_thrs)
num_recalls = len(self.params.rec_thrs)
num_cats = len(cat_ids)
num_area_rngs = len(self.params.area_rng)
num_imgs = len(self.params.img_ids)
# -1 for absent categories
precision = -np.ones((num_thrs, num_recalls, num_cats, num_area_rngs))
recall = -np.ones((num_thrs, num_cats, num_area_rngs))
# Initialize dt_pointers
dt_pointers = {}
for cat_idx in range(num_cats):
dt_pointers[cat_idx] = {}
for area_idx in range(num_area_rngs):
dt_pointers[cat_idx][area_idx] = {}
# Per category evaluation
for cat_idx in range(num_cats):
Nk = cat_idx * num_area_rngs * num_imgs
for area_idx in range(num_area_rngs):
Na = area_idx * num_imgs
E = [self.eval_imgs[Nk + Na + img_idx] for img_idx in range(num_imgs)]
# Remove elements which are None
E = [e for e in E if e is not None]
if len(E) == 0:
continue
# Append all scores: shape (N,)
dt_scores = np.concatenate([e["dt_scores"] for e in E], axis=0)
dt_ids = np.concatenate([e["dt_ids"] for e in E], axis=0)
dt_idx = np.argsort(-dt_scores, kind="mergesort")
dt_scores = dt_scores[dt_idx]
dt_ids = dt_ids[dt_idx]
dt_m = np.concatenate([e["dt_matches"] for e in E], axis=1)[:, dt_idx]
dt_ig = np.concatenate([e["dt_ignore"] for e in E], axis=1)[:, dt_idx]
gt_ig = np.concatenate([e["gt_ignore"] for e in E])
# num gt anns to consider
num_gt = np.count_nonzero(gt_ig == 0)
if num_gt == 0:
continue
tps = np.logical_and(dt_m, np.logical_not(dt_ig))
fps = np.logical_and(np.logical_not(dt_m), np.logical_not(dt_ig))
tp_sum = np.cumsum(tps, axis=1).astype(dtype=np.float)
fp_sum = np.cumsum(fps, axis=1).astype(dtype=np.float)
dt_pointers[cat_idx][area_idx] = {
"dt_ids": dt_ids,
"tps": tps,
"fps": fps,
}
for iou_thr_idx, (tp, fp) in enumerate(zip(tp_sum, fp_sum)):
tp = np.array(tp)
fp = np.array(fp)
num_tp = len(tp)
rc = tp / num_gt
if num_tp:
recall[iou_thr_idx, cat_idx, area_idx] = rc[-1]
else:
recall[iou_thr_idx, cat_idx, area_idx] = 0
# np.spacing(1) ~= eps
pr = tp / (fp + tp + np.spacing(1))
pr = pr.tolist()
# Replace each precision value with the maximum precision
# value to the right of that recall level. This ensures
# that the calculated AP value will be less suspectable
# to small variations in the ranking.
for i in range(num_tp - 1, 0, -1):
if pr[i] > pr[i - 1]:
pr[i - 1] = pr[i]
rec_thrs_insert_idx = np.searchsorted(rc, self.params.rec_thrs, side="left")
pr_at_recall = [0.0] * num_recalls
try:
for _idx, pr_idx in enumerate(rec_thrs_insert_idx):
pr_at_recall[_idx] = pr[pr_idx]
except Exception:
pass
precision[iou_thr_idx, :, cat_idx, area_idx] = np.array(pr_at_recall)
self.eval = {
"params": self.params,
"counts": [num_thrs, num_recalls, num_cats, num_area_rngs],
"date": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"precision": precision,
"recall": recall,
"dt_pointers": dt_pointers,
}
def _summarize(self, summary_type, iou_thr=None, area_rng="all", freq_group_idx=None):
aidx = [idx for idx, _area_rng in enumerate(self.params.area_rng_lbl) if _area_rng == area_rng]
if summary_type == "ap":
s = self.eval["precision"]
if iou_thr is not None:
tidx = np.where(iou_thr == self.params.iou_thrs)[0]
s = s[tidx]
if freq_group_idx is not None:
s = s[:, :, self.freq_groups[freq_group_idx], aidx]
else:
s = s[:, :, :, aidx]
else:
s = self.eval["recall"]
if iou_thr is not None:
tidx = np.where(iou_thr == self.params.iou_thrs)[0]
s = s[tidx]
s = s[:, :, aidx]
if len(s[s > -1]) == 0:
mean_s = -1
else:
mean_s = np.mean(s[s > -1])
return mean_s
def summarize(self):
"""Compute and display summary metrics for evaluation results."""
if not self.eval:
raise RuntimeError("Please run accumulate() first.")
max_dets = self.params.max_dets
self.results["AP"] = self._summarize("ap")
self.results["AP50"] = self._summarize("ap", iou_thr=0.50)
self.results["AP75"] = self._summarize("ap", iou_thr=0.75)
self.results["APs"] = self._summarize("ap", area_rng="small")
self.results["APm"] = self._summarize("ap", area_rng="medium")
self.results["APl"] = self._summarize("ap", area_rng="large")
self.results["APr"] = self._summarize("ap", freq_group_idx=0)
self.results["APc"] = self._summarize("ap", freq_group_idx=1)
self.results["APf"] = self._summarize("ap", freq_group_idx=2)
self.stats = np.zeros((9,))
self.stats[0] = self._summarize("ap")
self.stats[1] = self._summarize("ap", iou_thr=0.50)
self.stats[2] = self._summarize("ap", iou_thr=0.75)
self.stats[3] = self._summarize("ap", area_rng="small")
self.stats[4] = self._summarize("ap", area_rng="medium")
self.stats[5] = self._summarize("ap", area_rng="large")
self.stats[6] = self._summarize("ap", freq_group_idx=0)
self.stats[7] = self._summarize("ap", freq_group_idx=1)
self.stats[8] = self._summarize("ap", freq_group_idx=2)
key = "AR@{}".format(max_dets)
self.results[key] = self._summarize("ar")
for area_rng in ["small", "medium", "large"]:
key = "AR{}@{}".format(area_rng[0], max_dets)
self.results[key] = self._summarize("ar", area_rng=area_rng)
_returned = self.print_results()
return _returned
def run(self):
"""Wrapper function which calculates the results."""
self.evaluate()
self.accumulate()
self.summarize()
def print_results(self):
template = " {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} catIds={:>3s}] = {:0.3f}"
out_strings = []
for key, value in self.results.items():
max_dets = self.params.max_dets
if "AP" in key:
title = "Average Precision"
_type = "(AP)"
else:
title = "Average Recall"
_type = "(AR)"
if len(key) > 2 and key[2].isdigit():
iou_thr = float(key[2:]) / 100
iou = "{:0.2f}".format(iou_thr)
else:
iou = "{:0.2f}:{:0.2f}".format(self.params.iou_thrs[0], self.params.iou_thrs[-1])
if len(key) > 2 and key[2] in ["r", "c", "f"]:
cat_group_name = key[2]
else:
cat_group_name = "all"
if len(key) > 2 and key[2] in ["s", "m", "l"]:
area_rng = key[2]
else:
area_rng = "all"
print(template.format(title, _type, iou, area_rng, max_dets, cat_group_name, value))
out_strings.append(template.format(title, _type, iou, area_rng, max_dets, cat_group_name, value))
return out_strings
def get_results(self):
if not self.results:
print("Warning: results is empty. Call run().")
return self.results
#################################################################
# end of straight copy from lvis, just fixing constructor
#################################################################
class LvisEvaluator(object):
def __init__(self, lvis_gt, iou_types):
assert isinstance(iou_types, (list, tuple))
# lvis_gt = copy.deepcopy(lvis_gt)
self.lvis_gt = lvis_gt
self.iou_types = iou_types
self.coco_eval = {}
for iou_type in iou_types:
self.coco_eval[iou_type] = LVISEval(lvis_gt, iou_type=iou_type)
self.img_ids = []
self.eval_imgs = {k: [] for k in iou_types}
def update(self, predictions):
img_ids = list(np.unique(list(predictions.keys())))
self.img_ids.extend(img_ids)
for iou_type in self.iou_types:
results = self.prepare(predictions, iou_type)
lvis_dt = LVISResults(self.lvis_gt, results)
lvis_eval = self.coco_eval[iou_type]
lvis_eval.lvis_dt = lvis_dt
lvis_eval.params.img_ids = list(img_ids)
lvis_eval.evaluate()
eval_imgs = lvis_eval.eval_imgs
eval_imgs = np.asarray(eval_imgs).reshape(
len(lvis_eval.params.cat_ids), len(lvis_eval.params.area_rng), len(lvis_eval.params.img_ids)
)
self.eval_imgs[iou_type].append(eval_imgs)
def synchronize_between_processes(self):
for iou_type in self.iou_types:
self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2)
create_common_lvis_eval(self.coco_eval[iou_type], self.img_ids, self.eval_imgs[iou_type])
def accumulate(self):
for lvis_eval in self.coco_eval.values():
lvis_eval.accumulate()
def summarize(self):
for iou_type, lvis_eval in self.coco_eval.items():
print("IoU metric: {}".format(iou_type))
lvis_eval.summarize()
def prepare(self, predictions, iou_type):
if iou_type == "bbox":
return self.prepare_for_lvis_detection(predictions)
elif iou_type == "segm":
return self.prepare_for_lvis_segmentation(predictions)
elif iou_type == "keypoints":
return self.prepare_for_lvis_keypoint(predictions)
else:
raise ValueError("Unknown iou type {}".format(iou_type))
def prepare_for_lvis_detection(self, predictions):
lvis_results = []
for original_id, prediction in predictions.items():
if len(prediction) == 0:
continue
boxes = prediction["boxes"]
boxes = convert_to_xywh(boxes).tolist()
scores = prediction["scores"].tolist()
labels = prediction["labels"].tolist()
lvis_results.extend(
[
{
"image_id": original_id,
"category_id": labels[k],
"bbox": box,
"score": scores[k],
}
for k, box in enumerate(boxes)
]
)
return lvis_results
def prepare_for_lvis_segmentation(self, predictions):
lvis_results = []
for original_id, prediction in predictions.items():
if len(prediction) == 0:
continue
scores = prediction["scores"]
labels = prediction["labels"]
masks = prediction["masks"]
masks = masks > 0.5
scores = prediction["scores"].tolist()
labels = prediction["labels"].tolist()
rles = [
mask_util.encode(np.array(mask[0, :, :, np.newaxis], dtype=np.uint8, order="F"))[0] for mask in masks
]
for rle in rles:
rle["counts"] = rle["counts"].decode("utf-8")
lvis_results.extend(
[
{
"image_id": original_id,
"category_id": labels[k],
"segmentation": rle,
"score": scores[k],
}
for k, rle in enumerate(rles)
]
)
return lvis_results
def _merge_lists(listA, listB, maxN, key):
result = []
indA, indB = 0, 0
while (indA < len(listA) or indB < len(listB)) and len(result) < maxN:
if (indB < len(listB)) and (indA >= len(listA) or key(listA[indA]) < key(listB[indB])):
result.append(listB[indB])
indB += 1
else:
result.append(listA[indA])
indA += 1
return result
# Adapted from https://github.com/achalddave/large-vocab-devil/blob/9aaddc15b00e6e0d370b16743233e40d973cd53f/scripts/evaluate_ap_fixed.py
class LvisEvaluatorFixedAP(object):
def __init__(self, gt: LVIS, topk=10000, fixed_ap=True):
self.results = []
self.by_cat = {}
self.gt = gt
self.topk = topk
self.fixed_ap = fixed_ap
def update(self, predictions):
cur_results = self.prepare(predictions)
if self.fixed_ap:
by_cat = defaultdict(list)
for ann in cur_results:
by_cat[ann["category_id"]].append(ann)
for cat, cat_anns in by_cat.items():
if cat not in self.by_cat:
self.by_cat[cat] = []
cur = sorted(cat_anns, key=lambda x: x["score"], reverse=True)[: self.topk]
self.by_cat[cat] = _merge_lists(self.by_cat[cat], cur, self.topk, key=lambda x: x["score"])
else:
by_id = defaultdict(list)
for ann in cur_results:
by_id[ann["image_id"]].append(ann)
for id_anns in by_id.values():
self.results.extend(sorted(id_anns, key=lambda x: x["score"], reverse=True)[:300])
def synchronize_between_processes(self):
if self.fixed_ap:
all_cats = dist.all_gather(self.by_cat)
self.by_cat = defaultdict(list)
for cats in all_cats:
for cat, cat_anns in cats.items():
self.by_cat[cat].extend(cat_anns)
else:
self.results = sum(dist.all_gather(self.results), [])
def prepare(self, predictions):
lvis_results = []
for original_id, prediction in predictions:
if len(prediction) == 0:
continue
boxes = prediction["boxes"]
boxes = convert_to_xywh(boxes).tolist()
scores = prediction["scores"].tolist()
labels = prediction["labels"].tolist()
lvis_results.extend(
[
{
"image_id": original_id,
"category_id": labels[k],
"bbox": box,
"score": scores[k],
}
for k, box in enumerate(boxes)
]
)
return lvis_results
def summarize(self):
if not dist.is_main_process():
return
if self.fixed_ap:
return self._summarize_fixed()
else:
return self._summarize_standard()
def _summarize_standard(self):
results = LVISResults(self.gt, self.results)
lvis_eval = LVISEval(self.gt, results, iou_type="bbox")
lvis_eval.run()
lvis_eval.print_results()
def _summarize_fixed(self):
results = []
missing_dets_cats = set()
for cat, cat_anns in self.by_cat.items():
if len(cat_anns) < self.topk:
missing_dets_cats.add(cat)
results.extend(sorted(cat_anns, key=lambda x: x["score"], reverse=True)[: self.topk])
if missing_dets_cats:
print(
f"\n===\n"
f"{len(missing_dets_cats)} classes had less than {self.topk} detections!\n"
f"Outputting {self.topk} detections for each class will improve AP further.\n"
f"If using detectron2, please use the lvdevil/infer_topk.py script to "
f"output a results file with {self.topk} detections for each class.\n"
f"==="
)
results = LVISResults(self.gt, results, max_dets=-1)
lvis_eval = LVISEval(self.gt, results, iou_type="bbox")
params = lvis_eval.params
params.max_dets = -1 # No limit on detections per image.
lvis_eval.run()
scores = lvis_eval.print_results()
metrics = {k: v for k, v in lvis_eval.results.items() if k.startswith("AP")}
print("copypaste: %s,%s", ",".join(map(str, metrics.keys())), "path")
return scores
class LvisDumper(object):
def __init__(self, topk=10000, fixed_ap=True, out_path="lvis_eval"):
self.results = []
self.by_cat = {}
self.topk = topk
self.fixed_ap = fixed_ap
self.out_path = out_path
if dist.is_main_process():
if not os.path.exists(self.out_path):
os.mkdir(self.out_path)
def update(self, predictions):
cur_results = self.prepare(predictions)
if self.fixed_ap:
by_cat = defaultdict(list)
for ann in cur_results:
by_cat[ann["category_id"]].append(ann)
for cat, cat_anns in by_cat.items():
if cat not in self.by_cat:
self.by_cat[cat] = []
cur = sorted(cat_anns, key=lambda x: x["score"], reverse=True)[: self.topk]
self.by_cat[cat] = _merge_lists(self.by_cat[cat], cur, self.topk, key=lambda x: x["score"])
else:
by_id = defaultdict(list)
for ann in cur_results:
by_id[ann["image_id"]].append(ann)
for id_anns in by_id.values():
self.results.extend(sorted(id_anns, key=lambda x: x["score"], reverse=True)[:300])
def synchronize_between_processes(self):
if self.fixed_ap:
all_cats = dist.all_gather(self.by_cat)
self.by_cat = defaultdict(list)
for cats in all_cats:
for cat, cat_anns in cats.items():
self.by_cat[cat].extend(cat_anns)
else:
self.results = sum(dist.all_gather(self.results), [])
def prepare(self, predictions):
lvis_results = []
for original_id, prediction in predictions:
if len(prediction) == 0:
continue
boxes = prediction["boxes"]
boxes = convert_to_xywh(boxes).tolist()
scores = prediction["scores"].tolist()
labels = prediction["labels"].tolist()
lvis_results.extend(
[
{
"image_id": original_id,
"category_id": labels[k],
"bbox": box,
"score": scores[k],
}
for k, box in enumerate(boxes)
]
)
return lvis_results
def summarize(self):
if not dist.is_main_process():
return
if self.fixed_ap:
self._summarize_fixed()
else:
self._summarize_standard()
def _summarize_standard(self):
json_path = os.path.join(self.out_path, "results.json")
print("dumping to ", json_path)
with open(json_path, "w") as f:
json.dump(self.results, f)
print("dumped")
def _summarize_fixed(self):
results = []
missing_dets_cats = set()
for cat, cat_anns in self.by_cat.items():
if len(cat_anns) < self.topk:
missing_dets_cats.add(cat)
results.extend(sorted(cat_anns, key=lambda x: x["score"], reverse=True)[: self.topk])
if missing_dets_cats:
print(
f"\n===\n"
f"{len(missing_dets_cats)} classes had less than {self.topk} detections!\n"
f"Outputting {self.topk} detections for each class will improve AP further.\n"
f"If using detectron2, please use the lvdevil/infer_topk.py script to "
f"output a results file with {self.topk} detections for each class.\n"
f"==="
)
json_path = os.path.join(self.out_path, "results.json")
print("dumping to ", json_path)
with open(json_path, "w") as f:
json.dump(results, f)
print("dumped")
def convert_to_xywh(boxes):
xmin, ymin, xmax, ymax = boxes.unbind(1)
return torch.stack((xmin, ymin, xmax - xmin, ymax - ymin), dim=1)
def create_common_lvis_eval(lvis_eval, img_ids, eval_imgs):
img_ids, eval_imgs = merge(img_ids, eval_imgs)
img_ids = list(img_ids)
eval_imgs = list(eval_imgs.flatten())
lvis_eval.eval_imgs = eval_imgs
lvis_eval.params.img_ids = img_ids
def lvis_evaluation():
pass |