import gradio as gr from huggingface_hub import InferenceClient client = InferenceClient("Pinkstack/Superthoughts-lite-v1") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response def format_response(response): # Replace ... with a collapsible section response = response.replace("", '
Show thoughts
') response = response.replace("", "
") return response css = """ .thoughts { border: 1px solid #ccc; padding: 10px; background-color: #000000; border-radius: 5px; } details summary { cursor: pointer; padding: 5px; background-color: #000000; border-radius: 5px; font-weight: bold; } details summary::-webkit-details-marker { display: none; } details summary:after { content: " ▶"; } details[open] summary:after { content: " ▼"; } """ with gr.Blocks(css=css) as demo: gr.Markdown("## Chat with Superthoughts lite! (1.7B)") gr.Markdown("**Warning:** The first output from the AI may take a few moments. After the first message, it should work at a decent speed.") chatbot = gr.Chatbot() msg = gr.Textbox() system_message = gr.Textbox(value="You must always include ... tokens.", label="System message") max_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens") temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") def user(user_message, history): return "", history + [[user_message, None]] def bot(history, system_message, max_tokens, temperature, top_p): user_message, _ = history[-1] response = "" for partial_response in respond(user_message, history[:-1], system_message, max_tokens, temperature, top_p): response = partial_response formatted_response = format_response(response) history[-1][1] = formatted_response return history msg.submit(user, [msg, chatbot], [msg, chatbot], queue=True).then( bot, [chatbot, system_message, max_tokens, temperature, top_p], chatbot ) demo.launch()