Pinkstack's picture
Update app.py
cdfe590 verified
raw
history blame
2.95 kB
import gradio as gr
from huggingface_hub import InferenceClient
client = InferenceClient("Pinkstack/Superthoughts-lite-v1")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
def format_response(response):
# Replace <think>...</think> with a collapsible section
response = response.replace("<think>", '<details><summary>Show thoughts</summary><div class="thoughts">')
response = response.replace("</think>", "</div></details>")
return response
css = """
.thoughts {
border: 1px solid #ccc;
padding: 10px;
background-color: #f9f9f9;
border-radius: 5px;
}
details summary {
cursor: pointer;
padding: 5px;
background-color: #e0e0e0;
border-radius: 5px;
font-weight: bold;
}
details summary::-webkit-details-marker {
display: none;
}
details summary:after {
content: " ▶";
}
details[open] summary:after {
content: " ▼";
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("## Chat with Superthoughts")
gr.Markdown("**Warning:** The first output from the AI may take a few moments. After the first message, it should work quickly.")
chatbot = gr.Chatbot()
msg = gr.Textbox()
system_message = gr.Textbox(value="You must always include <think> ... </think> <output> </output> tokens.", label="System message")
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
def user(user_message, history):
return "", history + [[user_message, None]]
def bot(history, system_message, max_tokens, temperature, top_p):
user_message, _ = history[-1]
response = ""
for partial_response in respond(user_message, history[:-1], system_message, max_tokens, temperature, top_p):
response = partial_response
formatted_response = format_response(response)
history[-1][1] = formatted_response
return history
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, [chatbot, system_message, max_tokens, temperature, top_p], chatbot
)
demo.launch()