File size: 4,439 Bytes
be82a8a 4971496 e0d2fc3 be82a8a 4971496 be82a8a cdfe590 e0d2fc3 cdfe590 e0d2fc3 4971496 e0d2fc3 4971496 e0d2fc3 4971496 e0d2fc3 cdfe590 e0d2fc3 cdfe590 be82a8a e0d2fc3 4971496 cdfe590 4971496 cdfe590 e0d2fc3 4971496 e0d2fc3 4971496 cdfe590 4971496 e0d2fc3 cdfe590 e0d2fc3 cdfe590 4971496 be82a8a e0d2fc3 cdfe590 e0d2fc3 cdfe590 e0d2fc3 cdfe590 e0d2fc3 cdfe590 e0d2fc3 cdfe590 e0d2fc3 cdfe590 e0d2fc3 cdfe590 be82a8a e0d2fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import gradio as gr
from huggingface_hub import InferenceClient
from typing import Iterator
client = InferenceClient("Pinkstack/Superthoughts-lite-v1")
def respond(
message: str,
history: list[tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
) -> Iterator[str]:
messages = [{"role": "system", "content": system_message}]
# Add history to messages
for user_msg, assistant_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
# Add current message
messages.append({"role": "user", "content": message})
# Initialize response
response = ""
# Stream the response
try:
for chunk in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
if chunk.choices[0].delta.content is not None:
token = chunk.choices[0].delta.content
response += token
yield format_response(response)
except Exception as e:
yield f"Error: {str(e)}"
def format_response(response: str) -> str:
"""Format the response with collapsible thinking sections"""
response = response.replace("<think>", '<details><summary>Show thinking 🧠</summary><div class="thoughts">')
response = response.replace("</think>", "</div></details>")
return response
# Custom CSS for styling
css = """
.thoughts {
border: 1px solid #ccc;
padding: 10px;
background-color: #f8f9fa;
border-radius: 5px;
margin: 5px 0;
}
details summary {
cursor: pointer;
padding: 5px;
background-color: #eee;
border-radius: 5px;
font-weight: bold;
margin: 5px 0;
}
details summary::-webkit-details-marker {
display: none;
}
details summary:after {
content: " ▶";
}
details[open] summary:after {
content: " ▼";
}
"""
# Create Gradio interface
with gr.Blocks(css=css) as demo:
gr.Markdown("# Chat with Superthoughts lite! (1.7B)")
gr.Markdown("**Warning:** The first output from the AI may take a few moments. After the first message, it should work at a decent speed, keep in mind that this chat is only meant for testing and experimenting.")
chatbot = gr.Chatbot(height=600)
msg = gr.Textbox(label="Your message", placeholder="Type your message here...")
with gr.Accordion("Advanced Settings", open=False):
system_message = gr.Textbox(
value="You must act in a conversational matter and always include <think> ... </think> <output> </output> tokens.",
label="System message"
)
max_tokens = gr.Slider(
minimum=1,
maximum=4096,
value=512,
step=1,
label="Max new tokens"
)
temperature = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)"
)
def user(user_message: str, history: list) -> tuple[str, list]:
"""Add user message to history"""
return "", history + [[user_message, None]]
def bot(history: list, system_message: str, max_tokens: int, temperature: float, top_p: float) -> Iterator[list]:
"""Generate and stream bot responses"""
user_message, _ = history[-1]
history[-1][1] = "" # Initialize bot's response
for partial_response in respond(user_message, history[:-1], system_message, max_tokens, temperature, top_p):
history[-1][1] = partial_response
yield history
# Set up chat message handling
msg.submit(
user,
[msg, chatbot],
[msg, chatbot],
queue=False
).then(
bot,
[chatbot, system_message, max_tokens, temperature, top_p],
chatbot
)
# Add a clear button
clear = gr.Button("Clear Conversation")
clear.click(lambda: None, None, chatbot, queue=False)
# Launch the interface
if __name__ == "__main__":
demo.queue()
demo.launch(share=True) |