import gradio as gr import torch from diffusers import StableDiffusionPipeline import boto3 from io import BytesIO import os AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") S3_BUCKET_NAME = os.getenv("BUCKET_NAME") model_id = "CompVis/stable-diffusion-v1-4" device = "cuda" if torch.cuda.is_available() else "cpu" pipe = StableDiffusionPipeline.from_pretrained( model_id, torch_dtype=torch.float32) pipe = pipe.to(device) def text_to_image(summary, image_name): # Crea una instancia del cliente de S3 s3 = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY) image_name = '-'.join(image_name.split()) + ".webp" def save_image_to_s3(image): # Crea un objeto de BytesIO para almacenar la imagen image_buffer = BytesIO() image.save(image_buffer, format='WEBP') image_buffer.seek(0) # Ruta completa del archivo en el bucket s3_key = "public/" + image_name # Sube la imagen al bucket de S3 s3.upload_fileobj(image_buffer, S3_BUCKET_NAME, s3_key) def generator_image(summary): prompt = summary image = pipe(prompt).images[0] # Guarda la imagen en S3 save_image_to_s3(image) # generate image generator_image(summary) return image_name iface = gr.Interface(fn=text_to_image, inputs="text", outputs="text") iface.launch()