PiKaHa commited on
Commit
5f761b4
·
1 Parent(s): 91cc187

Update app.py with transformer embeddings and prediction pipeline

Browse files
Files changed (1) hide show
  1. app.py +3 -2
app.py CHANGED
@@ -62,12 +62,13 @@ def get_embedding(sequence, esm_model_name, layer):
62
 
63
  # Convert to DataFrame with named columns
64
  feature_columns = {f"D{i+1}": embedding[0, i] for i in range(embedding.shape[1])}
65
- embedding_df = pd.DataFrame([feature_columns])
66
-
67
  return embedding_df.values, embedding_df
68
 
69
 
70
  def predict_with_gpflow(model, X):
 
71
  # Convert input to TensorFlow tensor
72
  X_tensor = tf.convert_to_tensor(X, dtype=tf.float64)
73
 
 
62
 
63
  # Convert to DataFrame with named columns
64
  feature_columns = {f"D{i+1}": embedding[0, i] for i in range(embedding.shape[1])}
65
+ embedding_df = pd.DataFrame([feature_columns])
66
+ print (embedding_df)
67
  return embedding_df.values, embedding_df
68
 
69
 
70
  def predict_with_gpflow(model, X):
71
+ print(model.signatures)
72
  # Convert input to TensorFlow tensor
73
  X_tensor = tf.convert_to_tensor(X, dtype=tf.float64)
74