Spaces:
Sleeping
Sleeping
Update app.py with transformer embeddings and prediction pipeline
Browse files
app.py
CHANGED
@@ -62,12 +62,13 @@ def get_embedding(sequence, esm_model_name, layer):
|
|
62 |
|
63 |
# Convert to DataFrame with named columns
|
64 |
feature_columns = {f"D{i+1}": embedding[0, i] for i in range(embedding.shape[1])}
|
65 |
-
embedding_df = pd.DataFrame([feature_columns])
|
66 |
-
|
67 |
return embedding_df.values, embedding_df
|
68 |
|
69 |
|
70 |
def predict_with_gpflow(model, X):
|
|
|
71 |
# Convert input to TensorFlow tensor
|
72 |
X_tensor = tf.convert_to_tensor(X, dtype=tf.float64)
|
73 |
|
|
|
62 |
|
63 |
# Convert to DataFrame with named columns
|
64 |
feature_columns = {f"D{i+1}": embedding[0, i] for i in range(embedding.shape[1])}
|
65 |
+
embedding_df = pd.DataFrame([feature_columns])
|
66 |
+
print (embedding_df)
|
67 |
return embedding_df.values, embedding_df
|
68 |
|
69 |
|
70 |
def predict_with_gpflow(model, X):
|
71 |
+
print(model.signatures)
|
72 |
# Convert input to TensorFlow tensor
|
73 |
X_tensor = tf.convert_to_tensor(X, dtype=tf.float64)
|
74 |
|