Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import transformers
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
4 |
+
from transformers import StopStringCriteria, StoppingCriteriaList
|
5 |
+
|
6 |
+
from datasets import load_dataset, concatenate_datasets
|
7 |
+
import torch
|
8 |
+
import threading
|
9 |
+
|
10 |
+
model_id = "PhysicsWallahAI/Aryabhatta-1.0"
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
|
13 |
+
|
14 |
+
def process_questions(example):
|
15 |
+
example["question_text"] = example["question"]
|
16 |
+
options = "\n".join([f"{chr(65+e)}. {op}" for e, op in enumerate(example["options"])])
|
17 |
+
example["question_text"] += "\n" + options
|
18 |
+
return example
|
19 |
+
|
20 |
+
dataset = concatenate_datasets([
|
21 |
+
load_dataset("PhysicsWallahAI/JEE-Main-2025-Math", "jan", split="test"),
|
22 |
+
load_dataset("PhysicsWallahAI/JEE-Main-2025-Math", "apr", split="test"),
|
23 |
+
])
|
24 |
+
examples = dataset.map(process_questions, remove_columns=dataset.column_names)["question_text"]
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
# add options
|
29 |
+
|
30 |
+
stop_strings = ["<|im_end|>", "<|end|>", "<im_start|>", "```python\n", "<|im_start|>", "]}}]}}]"]
|
31 |
+
|
32 |
+
|
33 |
+
def strip_bad_tokens(s, stop_strings):
|
34 |
+
for suffix in stop_strings:
|
35 |
+
if s.endswith(suffix):
|
36 |
+
return s[:-len(suffix)]
|
37 |
+
return s
|
38 |
+
|
39 |
+
def generate_answer_stream(question):
|
40 |
+
messages = [
|
41 |
+
{'role': 'system', 'content': 'Think step-by-step; put only the final answer inside \\boxed{}.'},
|
42 |
+
{'role': 'user', 'content': question}
|
43 |
+
]
|
44 |
+
|
45 |
+
text = tokenizer.apply_chat_template(
|
46 |
+
messages,
|
47 |
+
tokenize=False,
|
48 |
+
add_generation_prompt=True
|
49 |
+
)
|
50 |
+
|
51 |
+
inputs = tokenizer([text], return_tensors="pt")
|
52 |
+
|
53 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
54 |
+
stopping = StoppingCriteriaList([StopStringCriteria(tokenizer, stop_strings)])
|
55 |
+
|
56 |
+
|
57 |
+
thread = threading.Thread(
|
58 |
+
target=model.generate,
|
59 |
+
kwargs=dict(
|
60 |
+
**inputs,
|
61 |
+
streamer=streamer,
|
62 |
+
max_new_tokens=4096,
|
63 |
+
stopping_criteria=stopping,
|
64 |
+
)
|
65 |
+
)
|
66 |
+
thread.start()
|
67 |
+
|
68 |
+
output = ""
|
69 |
+
for token in streamer:
|
70 |
+
output += token
|
71 |
+
output = strip_bad_tokens(output, stop_strings)
|
72 |
+
yield output
|
73 |
+
|
74 |
+
demo = gr.Interface(
|
75 |
+
fn=generate_answer_stream,
|
76 |
+
inputs=gr.Textbox(lines=4, label="Enter a Math Question"),
|
77 |
+
outputs=gr.Textbox(label="Model's Response", lines=10),
|
78 |
+
examples=examples,
|
79 |
+
title="Aryabhatta 1.0 Demo",
|
80 |
+
description=""
|
81 |
+
)
|
82 |
+
|
83 |
+
if __name__ == "__main__":
|
84 |
+
demo.launch()
|