Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,985 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Complete Medical Literature Health Dataset Generator with Gradio Interface
|
2 |
+
#
|
3 |
+
# This creates a web-based interface for generating synthetic health optimization datasets
|
4 |
+
|
5 |
+
# =====================================================================
|
6 |
+
# STEP 1: INSTALLATIONS AND IMPORTS
|
7 |
+
# =====================================================================
|
8 |
+
|
9 |
+
# Install required packages
|
10 |
+
import subprocess
|
11 |
+
import sys
|
12 |
+
|
13 |
+
def install_packages():
|
14 |
+
"""Install required packages"""
|
15 |
+
packages = ['openai', 'gradio', 'python-dotenv', 'requests', 'pandas']
|
16 |
+
for package in packages:
|
17 |
+
try:
|
18 |
+
__import__(package)
|
19 |
+
except ImportError:
|
20 |
+
print(f"Installing {package}...")
|
21 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
|
22 |
+
|
23 |
+
# Run installation
|
24 |
+
install_packages()
|
25 |
+
|
26 |
+
# Import libraries
|
27 |
+
import gradio as gr
|
28 |
+
import json
|
29 |
+
import random
|
30 |
+
import re
|
31 |
+
import time
|
32 |
+
import os
|
33 |
+
import io
|
34 |
+
import zipfile
|
35 |
+
from datetime import datetime
|
36 |
+
from typing import Dict, List, Any, Optional, Tuple
|
37 |
+
from openai import OpenAI
|
38 |
+
import pandas as pd
|
39 |
+
|
40 |
+
# =====================================================================
|
41 |
+
# STEP 2: CORE CLASSES (Same as before but with progress callbacks)
|
42 |
+
# =====================================================================
|
43 |
+
|
44 |
+
class MedicalLiteratureSimulator:
|
45 |
+
"""Simulates medical literature research for health dataset generation"""
|
46 |
+
|
47 |
+
def __init__(self):
|
48 |
+
self.research_domains = {
|
49 |
+
"longevity": {
|
50 |
+
"interventions": ["NAD+ supplementation", "resveratrol", "metformin", "caloric restriction"],
|
51 |
+
"biomarkers": ["telomere length", "cellular senescence", "inflammatory markers", "mitochondrial function"],
|
52 |
+
"outcomes": ["biological age reduction", "improved healthspan", "enhanced cellular repair"]
|
53 |
+
},
|
54 |
+
"metabolic_health": {
|
55 |
+
"interventions": ["berberine", "intermittent fasting", "alpha-lipoic acid", "chromium"],
|
56 |
+
"biomarkers": ["glucose levels", "insulin sensitivity", "HbA1c", "HOMA-IR"],
|
57 |
+
"outcomes": ["improved glucose control", "enhanced insulin sensitivity", "reduced inflammation"]
|
58 |
+
},
|
59 |
+
"cardiovascular": {
|
60 |
+
"interventions": ["omega-3 fatty acids", "coenzyme Q10", "magnesium", "nattokinase"],
|
61 |
+
"biomarkers": ["blood pressure", "cholesterol levels", "CRP", "endothelial function"],
|
62 |
+
"outcomes": ["reduced blood pressure", "improved lipid profile", "decreased inflammation"]
|
63 |
+
},
|
64 |
+
"cognitive": {
|
65 |
+
"interventions": ["lion's mane mushroom", "phosphatidylserine", "bacopa monnieri", "acetyl-L-carnitine"],
|
66 |
+
"biomarkers": ["cognitive performance", "BDNF levels", "neuroinflammation", "memory function"],
|
67 |
+
"outcomes": ["enhanced memory", "improved cognitive function", "neuroprotection"]
|
68 |
+
},
|
69 |
+
"hormonal": {
|
70 |
+
"interventions": ["ashwagandha", "vitamin D", "DHEA", "maca root"],
|
71 |
+
"biomarkers": ["cortisol levels", "thyroid hormones", "sex hormones", "stress markers"],
|
72 |
+
"outcomes": ["hormone balance", "improved energy", "better sleep quality"]
|
73 |
+
},
|
74 |
+
"inflammation": {
|
75 |
+
"interventions": ["curcumin", "omega-3", "quercetin", "boswellia"],
|
76 |
+
"biomarkers": ["CRP", "IL-6", "TNF-alpha", "oxidative stress"],
|
77 |
+
"outcomes": ["reduced inflammation", "improved immune function", "enhanced recovery"]
|
78 |
+
}
|
79 |
+
}
|
80 |
+
|
81 |
+
def generate_study_data(self, domain: str) -> Dict[str, Any]:
|
82 |
+
"""Generate realistic medical study data"""
|
83 |
+
if domain not in self.research_domains:
|
84 |
+
domain = "longevity"
|
85 |
+
|
86 |
+
domain_data = self.research_domains[domain]
|
87 |
+
|
88 |
+
study = {
|
89 |
+
"pmid": f"PMID{random.randint(35000000, 40000000)}",
|
90 |
+
"title": self._generate_study_title(domain, domain_data),
|
91 |
+
"abstract": self._generate_study_abstract(domain, domain_data),
|
92 |
+
"journal": random.choice([
|
93 |
+
"Nature Medicine", "Cell Metabolism", "Journal of Clinical Medicine",
|
94 |
+
"Circulation", "Aging Cell", "Nutrients", "Clinical Nutrition"
|
95 |
+
]),
|
96 |
+
"year": random.choice([2023, 2024]),
|
97 |
+
"domain": domain,
|
98 |
+
"interventions": random.sample(domain_data["interventions"], min(2, len(domain_data["interventions"]))),
|
99 |
+
"biomarkers": random.sample(domain_data["biomarkers"], min(3, len(domain_data["biomarkers"]))),
|
100 |
+
"outcomes": random.sample(domain_data["outcomes"], min(2, len(domain_data["outcomes"]))),
|
101 |
+
"participant_count": random.randint(50, 300),
|
102 |
+
"duration_weeks": random.choice([8, 12, 16, 24]),
|
103 |
+
"dosages": self._generate_dosages(domain_data["interventions"][0])
|
104 |
+
}
|
105 |
+
|
106 |
+
return study
|
107 |
+
|
108 |
+
def _generate_study_title(self, domain: str, domain_data: Dict) -> str:
|
109 |
+
intervention = random.choice(domain_data["interventions"])
|
110 |
+
outcome = random.choice(domain_data["outcomes"])
|
111 |
+
|
112 |
+
titles = [
|
113 |
+
f"Effects of {intervention} on {outcome}: A randomized controlled trial",
|
114 |
+
f"{intervention} supplementation improves {outcome} in healthy adults",
|
115 |
+
f"Clinical evaluation of {intervention} for {outcome} optimization",
|
116 |
+
f"Randomized trial of {intervention} in {outcome} enhancement"
|
117 |
+
]
|
118 |
+
|
119 |
+
return random.choice(titles)
|
120 |
+
|
121 |
+
def _generate_study_abstract(self, domain: str, domain_data: Dict) -> str:
|
122 |
+
intervention = domain_data["interventions"][0]
|
123 |
+
biomarker = random.choice(domain_data["biomarkers"])
|
124 |
+
outcome = random.choice(domain_data["outcomes"])
|
125 |
+
|
126 |
+
abstract = f"""
|
127 |
+
Background: {intervention} has shown promise in preliminary studies for health optimization.
|
128 |
+
|
129 |
+
Objective: To evaluate the effects of {intervention} supplementation on {biomarker} and related health outcomes.
|
130 |
+
|
131 |
+
Methods: Randomized, double-blind, placebo-controlled trial with {random.randint(120, 250)} participants aged 40-65 years.
|
132 |
+
Subjects received {intervention} or placebo for {random.randint(12, 24)} weeks.
|
133 |
+
|
134 |
+
Results: {intervention} supplementation significantly improved {outcome} compared to placebo (p<0.05).
|
135 |
+
{biomarker.capitalize()} showed {random.randint(15, 35)}% improvement from baseline.
|
136 |
+
Secondary outcomes included improved quality of life and no serious adverse events.
|
137 |
+
|
138 |
+
Conclusions: {intervention} supplementation provides significant benefits for {outcome} with excellent safety profile.
|
139 |
+
""".strip()
|
140 |
+
|
141 |
+
return abstract
|
142 |
+
|
143 |
+
def _generate_dosages(self, intervention: str) -> List[str]:
|
144 |
+
dosage_ranges = {
|
145 |
+
"NAD+": ["250mg", "500mg", "1000mg"],
|
146 |
+
"resveratrol": ["100mg", "250mg", "500mg"],
|
147 |
+
"berberine": ["500mg", "1000mg", "1500mg"],
|
148 |
+
"omega-3": ["1000mg", "2000mg", "3000mg"],
|
149 |
+
"magnesium": ["200mg", "400mg", "600mg"],
|
150 |
+
"curcumin": ["500mg", "1000mg", "1500mg"]
|
151 |
+
}
|
152 |
+
|
153 |
+
for key in dosage_ranges:
|
154 |
+
if key.lower() in intervention.lower():
|
155 |
+
return random.sample(dosage_ranges[key], min(2, len(dosage_ranges[key])))
|
156 |
+
|
157 |
+
return ["500mg", "1000mg"]
|
158 |
+
|
159 |
+
class HealthProfileGenerator:
|
160 |
+
"""Generates realistic health profiles based on medical studies"""
|
161 |
+
|
162 |
+
def __init__(self):
|
163 |
+
self.severity_levels = {
|
164 |
+
"optimal": {"multiplier": 1.0, "description": "excellent baseline health with optimization focus"},
|
165 |
+
"mild": {"multiplier": 1.2, "description": "minor health concerns with good overall function"},
|
166 |
+
"moderate": {"multiplier": 1.5, "description": "noticeable health issues requiring intervention"},
|
167 |
+
"severe": {"multiplier": 2.0, "description": "significant health challenges needing intensive protocols"}
|
168 |
+
}
|
169 |
+
|
170 |
+
def generate_profile_from_study(self, study: Dict[str, Any], severity: str = "moderate") -> Dict[str, Any]:
|
171 |
+
"""Generate complete health profile based on study data and severity level"""
|
172 |
+
domain = study.get("domain", "longevity")
|
173 |
+
severity_data = self.severity_levels.get(severity, self.severity_levels["moderate"])
|
174 |
+
multiplier = severity_data["multiplier"]
|
175 |
+
|
176 |
+
age = random.randint(35, 65)
|
177 |
+
gender = random.choice(["male", "female"])
|
178 |
+
|
179 |
+
labs = self._generate_lab_values(domain, multiplier)
|
180 |
+
|
181 |
+
health_profile = {
|
182 |
+
"user_tests_result_data": {
|
183 |
+
"Labs": labs,
|
184 |
+
"gut_microbiome": self._generate_gut_microbiome(severity),
|
185 |
+
"epigenetics": self._generate_epigenetics(severity),
|
186 |
+
"wearables": self._generate_wearables(severity),
|
187 |
+
"cgm": self._generate_cgm(severity)
|
188 |
+
},
|
189 |
+
"user_query": self._generate_user_query(study, age, gender, severity),
|
190 |
+
"source_study": {
|
191 |
+
"pmid": study.get("pmid"),
|
192 |
+
"domain": domain,
|
193 |
+
"severity": severity,
|
194 |
+
"title": study.get("title")
|
195 |
+
}
|
196 |
+
}
|
197 |
+
|
198 |
+
return health_profile
|
199 |
+
|
200 |
+
def _generate_lab_values(self, domain: str, multiplier: float) -> Dict[str, Any]:
|
201 |
+
"""Generate realistic lab values based on domain and severity"""
|
202 |
+
base_labs = {
|
203 |
+
"blood_tests": {
|
204 |
+
"systolic_bp": int(random.randint(120, 140) * multiplier),
|
205 |
+
"diastolic_bp": int(random.randint(70, 90) * multiplier),
|
206 |
+
"total_cholesterol": int(random.randint(180, 220) * multiplier),
|
207 |
+
"ldl": int(random.randint(100, 140) * multiplier),
|
208 |
+
"hdl": int(random.randint(40, 60) / multiplier),
|
209 |
+
"triglycerides": int(random.randint(80, 150) * multiplier),
|
210 |
+
"apoB": int(random.randint(70, 110) * multiplier),
|
211 |
+
"lp_a": random.randint(10, 50)
|
212 |
+
},
|
213 |
+
"inflammatory": {
|
214 |
+
"hscrp": round(random.uniform(1.0, 4.0) * multiplier, 1),
|
215 |
+
"esr": int(random.randint(5, 25) * multiplier),
|
216 |
+
"il6": round(random.uniform(1.0, 5.0) * multiplier, 1),
|
217 |
+
"tnf_alpha": round(random.uniform(1.0, 3.0) * multiplier, 1),
|
218 |
+
"oxidative_stress_markers": "elevated" if multiplier > 1.3 else "normal",
|
219 |
+
"homocysteine": round(random.uniform(8, 15) * multiplier, 1)
|
220 |
+
},
|
221 |
+
"nutritional": {
|
222 |
+
"vitamin_d": int(random.randint(25, 50) / multiplier),
|
223 |
+
"b12": random.randint(250, 400),
|
224 |
+
"folate": round(random.uniform(6, 14), 1),
|
225 |
+
"iron": random.randint(60, 120),
|
226 |
+
"ferritin": random.randint(30, 100),
|
227 |
+
"selenium": random.randint(80, 120),
|
228 |
+
"zinc": random.randint(70, 110),
|
229 |
+
"magnesium": round(random.uniform(1.5, 2.2), 1),
|
230 |
+
"omega3_index": round(random.uniform(4, 8) / multiplier, 1)
|
231 |
+
}
|
232 |
+
}
|
233 |
+
|
234 |
+
if domain == "metabolic_health":
|
235 |
+
base_labs["metabolic"] = {
|
236 |
+
"fasting_glucose": int(random.randint(85, 110) * multiplier),
|
237 |
+
"hba1c": round(random.uniform(5.2, 6.0) * min(multiplier, 1.4), 1),
|
238 |
+
"insulin_fasting": round(random.uniform(5, 15) * multiplier, 1),
|
239 |
+
"homa_ir": round(random.uniform(1.5, 4.0) * multiplier, 1)
|
240 |
+
}
|
241 |
+
|
242 |
+
return base_labs
|
243 |
+
|
244 |
+
def _generate_gut_microbiome(self, severity: str) -> str:
|
245 |
+
scores = {
|
246 |
+
"optimal": random.uniform(8.5, 9.5),
|
247 |
+
"mild": random.uniform(7.0, 8.5),
|
248 |
+
"moderate": random.uniform(5.5, 7.0),
|
249 |
+
"severe": random.uniform(3.5, 5.5)
|
250 |
+
}
|
251 |
+
|
252 |
+
score = scores.get(severity, 6.5)
|
253 |
+
|
254 |
+
descriptions = {
|
255 |
+
"optimal": "excellent diversity with optimal bacterial balance",
|
256 |
+
"mild": "good diversity with minor imbalances",
|
257 |
+
"moderate": "moderate dysbiosis with reduced beneficial bacteria",
|
258 |
+
"severe": "significant dysbiosis with pathogenic overgrowth"
|
259 |
+
}
|
260 |
+
|
261 |
+
desc = descriptions.get(severity, "moderate dysbiosis")
|
262 |
+
return f"Diversity score {score:.1f}/10, {desc}, beneficial bacteria {random.randint(60, 90)}%"
|
263 |
+
|
264 |
+
def _generate_epigenetics(self, severity: str) -> str:
|
265 |
+
age_acceleration = {
|
266 |
+
"optimal": random.randint(-2, 1),
|
267 |
+
"mild": random.randint(1, 3),
|
268 |
+
"moderate": random.randint(3, 6),
|
269 |
+
"severe": random.randint(6, 12)
|
270 |
+
}
|
271 |
+
|
272 |
+
acceleration = age_acceleration.get(severity, 4)
|
273 |
+
telomere_percentile = max(10, random.randint(30, 80) - acceleration * 5)
|
274 |
+
|
275 |
+
return f"Biological age acceleration: {acceleration} years, telomere length: {telomere_percentile}th percentile, DunedinPACE: {round(random.uniform(0.9, 1.4), 2)}"
|
276 |
+
|
277 |
+
def _generate_wearables(self, severity: str) -> Dict[str, int]:
|
278 |
+
base_ranges = {
|
279 |
+
"optimal": {"hrv": (55, 75), "rhr": (45, 60), "sleep": (85, 95)},
|
280 |
+
"mild": {"hrv": (45, 65), "rhr": (55, 70), "sleep": (75, 85)},
|
281 |
+
"moderate": {"hrv": (30, 50), "rhr": (65, 80), "sleep": (60, 75)},
|
282 |
+
"severe": {"hrv": (20, 35), "rhr": (75, 95), "sleep": (45, 65)}
|
283 |
+
}
|
284 |
+
|
285 |
+
ranges = base_ranges.get(severity, base_ranges["moderate"])
|
286 |
+
|
287 |
+
return {
|
288 |
+
"hrv_avg": random.randint(*ranges["hrv"]),
|
289 |
+
"rhr": random.randint(*ranges["rhr"]),
|
290 |
+
"sleep_score": random.randint(*ranges["sleep"]),
|
291 |
+
"recovery_score": random.randint(ranges["sleep"][0]-10, ranges["sleep"][1]-5),
|
292 |
+
"stress_score": random.randint(100-ranges["sleep"][1], 100-ranges["sleep"][0]+20),
|
293 |
+
"vo2_max": random.randint(25, 50),
|
294 |
+
"fitness_age": random.randint(30, 65)
|
295 |
+
}
|
296 |
+
|
297 |
+
def _generate_cgm(self, severity: str) -> str:
|
298 |
+
glucose_ranges = {
|
299 |
+
"optimal": (80, 95, 92, 98),
|
300 |
+
"mild": (85, 105, 85, 95),
|
301 |
+
"moderate": (95, 120, 70, 85),
|
302 |
+
"severe": (110, 140, 55, 75)
|
303 |
+
}
|
304 |
+
|
305 |
+
avg_min, avg_max, tir_min, tir_max = glucose_ranges.get(severity, glucose_ranges["moderate"])
|
306 |
+
return f"Average glucose {random.randint(avg_min, avg_max)} mg/dL, time in range {random.randint(tir_min, tir_max)}%"
|
307 |
+
|
308 |
+
def _generate_user_query(self, study: Dict[str, Any], age: int, gender: str, severity: str) -> str:
|
309 |
+
domain = study.get("domain", "longevity")
|
310 |
+
|
311 |
+
base_queries = {
|
312 |
+
"longevity": f"I'm a {age}-year-old {gender} interested in longevity optimization and anti-aging protocols",
|
313 |
+
"metabolic_health": f"I'm a {age}-year-old {gender} with metabolic dysfunction seeking evidence-based glucose control",
|
314 |
+
"cardiovascular": f"I'm a {age}-year-old {gender} with cardiovascular risk factors wanting heart health optimization",
|
315 |
+
"cognitive": f"I'm a {age}-year-old {gender} seeking cognitive enhancement and brain health optimization",
|
316 |
+
"hormonal": f"I'm a {age}-year-old {gender} with hormonal imbalances needing optimization protocols",
|
317 |
+
"inflammation": f"I'm a {age}-year-old {gender} with chronic inflammation seeking anti-inflammatory interventions"
|
318 |
+
}
|
319 |
+
|
320 |
+
base_query = base_queries.get(domain, base_queries["longevity"])
|
321 |
+
|
322 |
+
severity_context = {
|
323 |
+
"optimal": "I have excellent baseline health but want to push the boundaries of optimization",
|
324 |
+
"mild": "I have minor health concerns and want targeted interventions",
|
325 |
+
"moderate": "I have noticeable health issues and need comprehensive protocols",
|
326 |
+
"severe": "I have significant health challenges and require intensive interventions"
|
327 |
+
}
|
328 |
+
|
329 |
+
context = severity_context.get(severity, "")
|
330 |
+
return f"{base_query}. {context}."
|
331 |
+
|
332 |
+
class AIProtocolGenerator:
|
333 |
+
"""Uses OpenAI to generate health optimization protocols"""
|
334 |
+
|
335 |
+
def __init__(self, api_key: str, model: str = "gpt-4"):
|
336 |
+
self.client = OpenAI(api_key=api_key)
|
337 |
+
self.model = model
|
338 |
+
self.total_cost = 0.0
|
339 |
+
|
340 |
+
def generate_protocol(self, health_profile: Dict[str, Any], study_context: Dict[str, Any], progress_callback=None) -> Optional[str]:
|
341 |
+
"""Generate comprehensive health optimization protocol"""
|
342 |
+
|
343 |
+
system_prompt = self._create_system_prompt(study_context)
|
344 |
+
user_prompt = self._create_user_prompt(health_profile, study_context)
|
345 |
+
|
346 |
+
try:
|
347 |
+
if progress_callback:
|
348 |
+
progress_callback(f"π Generating protocol using {self.model}...")
|
349 |
+
|
350 |
+
response = self.client.chat.completions.create(
|
351 |
+
model=self.model,
|
352 |
+
messages=[
|
353 |
+
{"role": "system", "content": system_prompt},
|
354 |
+
{"role": "user", "content": user_prompt}
|
355 |
+
],
|
356 |
+
max_tokens=4000,
|
357 |
+
temperature=0.7,
|
358 |
+
top_p=0.9
|
359 |
+
)
|
360 |
+
|
361 |
+
self._update_cost(response.usage)
|
362 |
+
|
363 |
+
if progress_callback:
|
364 |
+
progress_callback(f"β
Protocol generated ({response.usage.total_tokens} tokens)")
|
365 |
+
|
366 |
+
return response.choices[0].message.content
|
367 |
+
|
368 |
+
except Exception as e:
|
369 |
+
if progress_callback:
|
370 |
+
progress_callback(f"β Error generating protocol: {e}")
|
371 |
+
return None
|
372 |
+
|
373 |
+
def _create_system_prompt(self, study_context: Dict[str, Any]) -> str:
|
374 |
+
domain = study_context.get("domain", "health")
|
375 |
+
interventions = ", ".join(study_context.get("interventions", []))
|
376 |
+
|
377 |
+
return f"""You are an advanced AI health optimization system specializing in evidence-based medicine and personalized protocols.
|
378 |
+
|
379 |
+
RESEARCH CONTEXT:
|
380 |
+
- Domain: {domain} optimization
|
381 |
+
- Key Interventions: {interventions}
|
382 |
+
- Evidence Level: Peer-reviewed clinical research
|
383 |
+
|
384 |
+
PROTOCOL REQUIREMENTS:
|
385 |
+
1. Executive Summary with current health assessment
|
386 |
+
2. Multi-Phase Protocol:
|
387 |
+
- Phase 1: Foundation (0-3 months)
|
388 |
+
- Phase 2: Optimization (3-6 months)
|
389 |
+
- Phase 3: Advanced Enhancement (6-12 months)
|
390 |
+
3. Specific supplement protocols with dosages and timing
|
391 |
+
4. Lifestyle interventions (exercise, nutrition, sleep)
|
392 |
+
5. Monitoring and assessment plans
|
393 |
+
6. Expected outcomes with realistic timelines
|
394 |
+
|
395 |
+
STYLE: Professional, authoritative, using Medicine 3.0 terminology. Reference biological age, biomarkers, and cellular health.
|
396 |
+
|
397 |
+
SAFETY: Keep dosages within evidence-based safe ranges. Include monitoring recommendations.
|
398 |
+
|
399 |
+
Generate comprehensive protocols (3000+ words) with actionable precision medicine recommendations."""
|
400 |
+
|
401 |
+
def _create_user_prompt(self, health_profile: Dict[str, Any], study_context: Dict[str, Any]) -> str:
|
402 |
+
return f"""
|
403 |
+
COMPREHENSIVE HEALTH OPTIMIZATION REQUEST:
|
404 |
+
|
405 |
+
Health Profile Analysis:
|
406 |
+
{json.dumps(health_profile, indent=2)}
|
407 |
+
|
408 |
+
Research Context:
|
409 |
+
- Study: {study_context.get('title', 'Health Optimization Study')}
|
410 |
+
- Domain: {study_context.get('domain', 'general health')}
|
411 |
+
- Key Findings: Based on clinical research showing significant improvements in health biomarkers
|
412 |
+
|
413 |
+
Please analyze this health profile and generate a detailed, personalized optimization protocol. Address the specific biomarker patterns, deficiencies, and health challenges identified in the data. Provide targeted interventions with precise dosing, timing, and monitoring protocols.
|
414 |
+
"""
|
415 |
+
|
416 |
+
def _update_cost(self, usage):
|
417 |
+
pricing = {
|
418 |
+
"gpt-3.5-turbo": {"input": 0.0015, "output": 0.002},
|
419 |
+
"gpt-4": {"input": 0.03, "output": 0.06},
|
420 |
+
"gpt-4-turbo": {"input": 0.01, "output": 0.03}
|
421 |
+
}
|
422 |
+
|
423 |
+
model_pricing = pricing.get(self.model, pricing["gpt-4"])
|
424 |
+
input_cost = usage.prompt_tokens * model_pricing["input"] / 1000
|
425 |
+
output_cost = usage.completion_tokens * model_pricing["output"] / 1000
|
426 |
+
|
427 |
+
self.total_cost += input_cost + output_cost
|
428 |
+
|
429 |
+
class HealthDatasetGenerator:
|
430 |
+
"""Complete system that orchestrates the entire dataset generation process"""
|
431 |
+
|
432 |
+
def __init__(self, api_key: str, model: str = "gpt-4"):
|
433 |
+
self.literature_sim = MedicalLiteratureSimulator()
|
434 |
+
self.profile_gen = HealthProfileGenerator()
|
435 |
+
self.protocol_gen = AIProtocolGenerator(api_key, model)
|
436 |
+
self.generated_examples = []
|
437 |
+
|
438 |
+
def generate_dataset(self,
|
439 |
+
domains: List[str] = None,
|
440 |
+
examples_per_domain: int = 2,
|
441 |
+
rate_limit_delay: float = 2.0,
|
442 |
+
progress_callback=None) -> Tuple[List[Dict[str, Any]], str]:
|
443 |
+
"""Generate complete health optimization dataset with progress updates"""
|
444 |
+
|
445 |
+
if domains is None:
|
446 |
+
domains = ["longevity", "metabolic_health", "cardiovascular", "cognitive"]
|
447 |
+
|
448 |
+
if progress_callback:
|
449 |
+
progress_callback(f"π Starting Health Dataset Generation")
|
450 |
+
progress_callback(f"Domains: {domains}")
|
451 |
+
progress_callback(f"Examples per domain: {examples_per_domain}")
|
452 |
+
progress_callback(f"Total examples to generate: {len(domains) * examples_per_domain}")
|
453 |
+
|
454 |
+
examples = []
|
455 |
+
total_examples = len(domains) * examples_per_domain
|
456 |
+
current_example = 0
|
457 |
+
|
458 |
+
for domain in domains:
|
459 |
+
if progress_callback:
|
460 |
+
progress_callback(f"\nπ Processing domain: {domain}")
|
461 |
+
|
462 |
+
for i in range(examples_per_domain):
|
463 |
+
current_example += 1
|
464 |
+
try:
|
465 |
+
if progress_callback:
|
466 |
+
progress_callback(f" Creating example {i+1}/{examples_per_domain} (Overall: {current_example}/{total_examples})")
|
467 |
+
|
468 |
+
# Generate study data
|
469 |
+
study = self.literature_sim.generate_study_data(domain)
|
470 |
+
if progress_callback:
|
471 |
+
progress_callback(f" π Generated study: {study['title'][:50]}...")
|
472 |
+
|
473 |
+
# Create health profile
|
474 |
+
severity = random.choice(["mild", "moderate", "severe"])
|
475 |
+
health_profile = self.profile_gen.generate_profile_from_study(study, severity)
|
476 |
+
if progress_callback:
|
477 |
+
progress_callback(f" π€ Created {severity} health profile")
|
478 |
+
|
479 |
+
# Generate protocol
|
480 |
+
protocol = self.protocol_gen.generate_protocol(health_profile, study, progress_callback)
|
481 |
+
|
482 |
+
if protocol:
|
483 |
+
training_example = {
|
484 |
+
"user_context": health_profile,
|
485 |
+
"response": protocol,
|
486 |
+
"citations": self._generate_citations(study),
|
487 |
+
"metadata": {
|
488 |
+
"domain": domain,
|
489 |
+
"severity": severity,
|
490 |
+
"study_pmid": study["pmid"],
|
491 |
+
"generated_at": datetime.now().isoformat()
|
492 |
+
}
|
493 |
+
}
|
494 |
+
|
495 |
+
examples.append(training_example)
|
496 |
+
if progress_callback:
|
497 |
+
progress_callback(f" β
Complete example generated")
|
498 |
+
|
499 |
+
# Rate limiting
|
500 |
+
if i < examples_per_domain - 1:
|
501 |
+
if progress_callback:
|
502 |
+
progress_callback(f" β³ Rate limit delay: {rate_limit_delay}s")
|
503 |
+
time.sleep(rate_limit_delay)
|
504 |
+
|
505 |
+
except Exception as e:
|
506 |
+
if progress_callback:
|
507 |
+
progress_callback(f" β Error generating example: {e}")
|
508 |
+
continue
|
509 |
+
|
510 |
+
if progress_callback:
|
511 |
+
progress_callback(f"\nπ Dataset generation complete!")
|
512 |
+
progress_callback(f"Generated: {len(examples)} examples")
|
513 |
+
progress_callback(f"Total cost: ${self.protocol_gen.total_cost:.4f}")
|
514 |
+
|
515 |
+
self.generated_examples = examples
|
516 |
+
return examples, f"Generated {len(examples)} examples. Total cost: ${self.protocol_gen.total_cost:.4f}"
|
517 |
+
|
518 |
+
def _generate_citations(self, study: Dict[str, Any]) -> Dict[str, List[str]]:
|
519 |
+
return {
|
520 |
+
"tier_1_peer_reviewed": [study["pmid"], f"PMC{random.randint(1000000, 9999999)}"],
|
521 |
+
"tier_2_rct": [f"{study['domain'].upper()}.2024.{random.randint(100000, 999999)}"],
|
522 |
+
"tier_3_cohort": [f"HEALTH.2023.{random.randint(100000, 999999)}"],
|
523 |
+
"real_world_cases": ["Evidence-based health optimization protocols"]
|
524 |
+
}
|
525 |
+
|
526 |
+
def export_dataset(self, filename: str = None) -> Tuple[str, List[str]]:
|
527 |
+
"""Export dataset and return zip file path and file list"""
|
528 |
+
|
529 |
+
if not filename:
|
530 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
531 |
+
filename = f"health_dataset_{timestamp}"
|
532 |
+
|
533 |
+
# Create all files in memory
|
534 |
+
files_created = []
|
535 |
+
|
536 |
+
# Raw dataset
|
537 |
+
raw_data = json.dumps(self.generated_examples, indent=2, ensure_ascii=False)
|
538 |
+
files_created.append((f"{filename}.json", raw_data))
|
539 |
+
|
540 |
+
# Fine-tuning format
|
541 |
+
fine_tune_lines = []
|
542 |
+
for example in self.generated_examples:
|
543 |
+
fine_tune_example = {
|
544 |
+
"messages": [
|
545 |
+
{
|
546 |
+
"role": "system",
|
547 |
+
"content": "You are an advanced AI health optimization system that creates evidence-based protocols."
|
548 |
+
},
|
549 |
+
{
|
550 |
+
"role": "user",
|
551 |
+
"content": f"Create a health optimization protocol for this profile:\n\n{json.dumps(example['user_context'], indent=2)}"
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"role": "assistant",
|
555 |
+
"content": example["response"]
|
556 |
+
}
|
557 |
+
]
|
558 |
+
}
|
559 |
+
fine_tune_lines.append(json.dumps(fine_tune_example, ensure_ascii=False))
|
560 |
+
|
561 |
+
fine_tune_data = '\n'.join(fine_tune_lines)
|
562 |
+
files_created.append((f"{filename}_fine_tuning.jsonl", fine_tune_data))
|
563 |
+
|
564 |
+
# Sample examples
|
565 |
+
sample_size = min(3, len(self.generated_examples))
|
566 |
+
sample_data = json.dumps(self.generated_examples[:sample_size], indent=2, ensure_ascii=False)
|
567 |
+
files_created.append((f"{filename}_samples.json", sample_data))
|
568 |
+
|
569 |
+
# Metadata
|
570 |
+
metadata = {
|
571 |
+
"generation_info": {
|
572 |
+
"generated_at": datetime.now().isoformat(),
|
573 |
+
"total_examples": len(self.generated_examples),
|
574 |
+
"total_cost": self.protocol_gen.total_cost,
|
575 |
+
"model_used": self.protocol_gen.model
|
576 |
+
},
|
577 |
+
"domains_covered": list(set(ex["metadata"]["domain"] for ex in self.generated_examples)),
|
578 |
+
"severity_distribution": {
|
579 |
+
severity: sum(1 for ex in self.generated_examples if ex["metadata"]["severity"] == severity)
|
580 |
+
for severity in ["mild", "moderate", "severe"]
|
581 |
+
}
|
582 |
+
}
|
583 |
+
|
584 |
+
metadata_data = json.dumps(metadata, indent=2, ensure_ascii=False)
|
585 |
+
files_created.append((f"{filename}_metadata.json", metadata_data))
|
586 |
+
|
587 |
+
# Create zip file
|
588 |
+
zip_buffer = io.BytesIO()
|
589 |
+
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
|
590 |
+
for file_name, file_content in files_created:
|
591 |
+
zip_file.writestr(file_name, file_content)
|
592 |
+
|
593 |
+
# Save zip file
|
594 |
+
zip_filename = f"{filename}.zip"
|
595 |
+
with open(zip_filename, 'wb') as f:
|
596 |
+
f.write(zip_buffer.getvalue())
|
597 |
+
|
598 |
+
file_list = [f[0] for f in files_created]
|
599 |
+
return zip_filename, file_list
|
600 |
+
|
601 |
+
# =====================================================================
|
602 |
+
# STEP 3: GRADIO INTERFACE
|
603 |
+
# =====================================================================
|
604 |
+
|
605 |
+
class HealthDatasetGradioInterface:
|
606 |
+
"""Gradio web interface for the health dataset generator"""
|
607 |
+
|
608 |
+
def __init__(self):
|
609 |
+
self.generator = None
|
610 |
+
self.available_domains = list(MedicalLiteratureSimulator().research_domains.keys())
|
611 |
+
|
612 |
+
def estimate_cost(self, domains, examples_per_domain, model):
|
613 |
+
"""Estimate generation cost"""
|
614 |
+
if not domains:
|
615 |
+
return "Please select at least one domain"
|
616 |
+
|
617 |
+
total_examples = len(domains) * examples_per_domain
|
618 |
+
|
619 |
+
cost_per_example = {
|
620 |
+
"gpt-3.5-turbo": 0.05,
|
621 |
+
"gpt-4": 0.25,
|
622 |
+
"gpt-4-turbo": 0.15
|
623 |
+
}
|
624 |
+
|
625 |
+
estimated_cost = total_examples * cost_per_example.get(model, 0.25)
|
626 |
+
|
627 |
+
return f"π° Estimated cost: ${estimated_cost:.2f} for {total_examples} examples"
|
628 |
+
|
629 |
+
def validate_inputs(self, api_key, domains, examples_per_domain):
|
630 |
+
"""Validate user inputs"""
|
631 |
+
if not api_key or not api_key.strip():
|
632 |
+
return False, "β Please provide your OpenAI API key"
|
633 |
+
|
634 |
+
if not domains:
|
635 |
+
return False, "β Please select at least one domain"
|
636 |
+
|
637 |
+
if examples_per_domain < 1 or examples_per_domain > 10:
|
638 |
+
return False, "β Examples per domain must be between 1 and 10"
|
639 |
+
|
640 |
+
return True, "β
Inputs are valid"
|
641 |
+
|
642 |
+
def generate_dataset_interface(self, api_key, domains, examples_per_domain, model, rate_limit):
|
643 |
+
"""Main dataset generation function for Gradio interface"""
|
644 |
+
|
645 |
+
# Validate inputs
|
646 |
+
is_valid, message = self.validate_inputs(api_key, domains, examples_per_domain)
|
647 |
+
if not is_valid:
|
648 |
+
yield message, "", "", None, None
|
649 |
+
return
|
650 |
+
|
651 |
+
# Initialize generator
|
652 |
+
try:
|
653 |
+
self.generator = HealthDatasetGenerator(api_key.strip(), model)
|
654 |
+
except Exception as e:
|
655 |
+
yield f"β Error initializing generator: {e}", "", "", None, None
|
656 |
+
return
|
657 |
+
|
658 |
+
# Progress tracking
|
659 |
+
progress_messages = []
|
660 |
+
|
661 |
+
def progress_callback(message):
|
662 |
+
progress_messages.append(message)
|
663 |
+
progress_text = "\n".join(progress_messages[-20:]) # Keep last 20 messages
|
664 |
+
return progress_text
|
665 |
+
|
666 |
+
try:
|
667 |
+
# Generate dataset
|
668 |
+
yield "π Starting dataset generation...", "", "", None, None
|
669 |
+
|
670 |
+
dataset, summary = self.generator.generate_dataset(
|
671 |
+
domains=domains,
|
672 |
+
examples_per_domain=examples_per_domain,
|
673 |
+
rate_limit_delay=rate_limit,
|
674 |
+
progress_callback=progress_callback
|
675 |
+
)
|
676 |
+
|
677 |
+
if not dataset:
|
678 |
+
yield "β No examples generated", "", "", None, None
|
679 |
+
return
|
680 |
+
|
681 |
+
# Export dataset
|
682 |
+
progress_callback("πΎ Exporting dataset...")
|
683 |
+
zip_filename, file_list = self.generator.export_dataset()
|
684 |
+
|
685 |
+
# Create preview
|
686 |
+
preview = self.create_dataset_preview(dataset)
|
687 |
+
|
688 |
+
# Final progress
|
689 |
+
final_progress = progress_callback(f"π Generation complete! Files: {', '.join(file_list)}")
|
690 |
+
|
691 |
+
yield final_progress, summary, preview, zip_filename, file_list
|
692 |
+
|
693 |
+
except Exception as e:
|
694 |
+
yield f"β Error during generation: {e}", "", "", None, None
|
695 |
+
|
696 |
+
def create_dataset_preview(self, dataset):
|
697 |
+
"""Create a preview of the generated dataset"""
|
698 |
+
if not dataset:
|
699 |
+
return "No data to preview"
|
700 |
+
|
701 |
+
preview = "π **Dataset Preview**\n\n"
|
702 |
+
|
703 |
+
# Summary statistics
|
704 |
+
preview += f"**Total Examples:** {len(dataset)}\n"
|
705 |
+
|
706 |
+
# Domain distribution
|
707 |
+
domains = [ex['metadata']['domain'] for ex in dataset]
|
708 |
+
domain_counts = {d: domains.count(d) for d in set(domains)}
|
709 |
+
preview += f"**Domain Distribution:** {domain_counts}\n"
|
710 |
+
|
711 |
+
# Severity distribution
|
712 |
+
severities = [ex['metadata']['severity'] for ex in dataset]
|
713 |
+
severity_counts = {s: severities.count(s) for s in set(severities)}
|
714 |
+
preview += f"**Severity Distribution:** {severity_counts}\n\n"
|
715 |
+
|
716 |
+
# Sample example
|
717 |
+
if dataset:
|
718 |
+
example = dataset[0]
|
719 |
+
preview += "**Sample Example:**\n"
|
720 |
+
preview += f"- **Domain:** {example['metadata']['domain']}\n"
|
721 |
+
preview += f"- **Severity:** {example['metadata']['severity']}\n"
|
722 |
+
preview += f"- **User Query:** {example['user_context']['user_query'][:150]}...\n"
|
723 |
+
preview += f"- **Response Length:** {len(example['response'])} characters\n"
|
724 |
+
preview += f"- **PMID:** {example['metadata']['study_pmid']}\n"
|
725 |
+
|
726 |
+
return preview
|
727 |
+
|
728 |
+
def analyze_dataset_file(self, zip_file):
|
729 |
+
"""Analyze uploaded dataset file"""
|
730 |
+
if zip_file is None:
|
731 |
+
return "No file uploaded"
|
732 |
+
|
733 |
+
try:
|
734 |
+
# Read the zip file
|
735 |
+
with zipfile.ZipFile(zip_file.name, 'r') as zip_ref:
|
736 |
+
# Look for the main dataset file
|
737 |
+
json_files = [f for f in zip_ref.namelist() if f.endswith('.json') and not f.endswith('_samples.json') and not f.endswith('_metadata.json')]
|
738 |
+
|
739 |
+
if json_files:
|
740 |
+
dataset_file = json_files[0]
|
741 |
+
with zip_ref.open(dataset_file) as f:
|
742 |
+
dataset = json.load(f)
|
743 |
+
|
744 |
+
analysis = "π **Dataset Analysis**\n\n"
|
745 |
+
analysis += f"**Total Examples:** {len(dataset)}\n"
|
746 |
+
analysis += f"**Average Response Length:** {sum(len(ex['response']) for ex in dataset) / len(dataset):.0f} characters\n"
|
747 |
+
|
748 |
+
# Quality checks
|
749 |
+
long_responses = sum(1 for ex in dataset if len(ex['response']) > 2000)
|
750 |
+
has_phases = sum(1 for ex in dataset if "Phase" in ex['response'])
|
751 |
+
has_dosages = sum(1 for ex in dataset if re.search(r'\d+\s*mg', ex['response']))
|
752 |
+
|
753 |
+
analysis += f"**Quality Metrics:**\n"
|
754 |
+
analysis += f"- Responses >2000 chars: {long_responses}/{len(dataset)} ({long_responses/len(dataset)*100:.1f}%)\n"
|
755 |
+
analysis += f"- Responses with phases: {has_phases}/{len(dataset)} ({has_phases/len(dataset)*100:.1f}%)\n"
|
756 |
+
analysis += f"- Responses with dosages: {has_dosages}/{len(dataset)} ({has_dosages/len(dataset)*100:.1f}%)\n"
|
757 |
+
|
758 |
+
return analysis
|
759 |
+
else:
|
760 |
+
return "No dataset JSON file found in zip"
|
761 |
+
|
762 |
+
except Exception as e:
|
763 |
+
return f"Error analyzing file: {e}"
|
764 |
+
|
765 |
+
def create_interface(self):
|
766 |
+
"""Create the Gradio interface"""
|
767 |
+
|
768 |
+
with gr.Blocks(title="Medical Literature Health Dataset Generator", theme=gr.themes.Soft()) as interface:
|
769 |
+
|
770 |
+
gr.Markdown("""
|
771 |
+
# π₯ Medical Literature Health Dataset Generator
|
772 |
+
|
773 |
+
This tool generates synthetic health optimization datasets based on medical literature patterns.
|
774 |
+
Perfect for training AI models on evidence-based health protocols.
|
775 |
+
|
776 |
+
β οΈ **Important:** Generated content is for research/educational purposes only. Not medical advice.
|
777 |
+
""")
|
778 |
+
|
779 |
+
with gr.Tab("π Generate Dataset"):
|
780 |
+
|
781 |
+
with gr.Row():
|
782 |
+
with gr.Column(scale=1):
|
783 |
+
gr.Markdown("### βοΈ Configuration")
|
784 |
+
|
785 |
+
api_key = gr.Textbox(
|
786 |
+
label="OpenAI API Key",
|
787 |
+
placeholder="sk-...",
|
788 |
+
type="password",
|
789 |
+
info="Your OpenAI API key for generating protocols"
|
790 |
+
)
|
791 |
+
|
792 |
+
domains = gr.CheckboxGroup(
|
793 |
+
label="Research Domains",
|
794 |
+
choices=self.available_domains,
|
795 |
+
value=["longevity", "metabolic_health"],
|
796 |
+
info="Select medical research domains to include"
|
797 |
+
)
|
798 |
+
|
799 |
+
examples_per_domain = gr.Slider(
|
800 |
+
label="Examples per Domain",
|
801 |
+
minimum=1,
|
802 |
+
maximum=10,
|
803 |
+
value=2,
|
804 |
+
step=1,
|
805 |
+
info="Number of examples to generate for each domain"
|
806 |
+
)
|
807 |
+
|
808 |
+
model = gr.Dropdown(
|
809 |
+
label="OpenAI Model",
|
810 |
+
choices=["gpt-3.5-turbo", "gpt-4", "gpt-4-turbo"],
|
811 |
+
value="gpt-4",
|
812 |
+
info="Model for generating protocols (GPT-4 recommended for quality)"
|
813 |
+
)
|
814 |
+
|
815 |
+
rate_limit = gr.Slider(
|
816 |
+
label="Rate Limit Delay (seconds)",
|
817 |
+
minimum=0.5,
|
818 |
+
maximum=5.0,
|
819 |
+
value=2.0,
|
820 |
+
step=0.5,
|
821 |
+
info="Delay between API calls to avoid rate limits"
|
822 |
+
)
|
823 |
+
|
824 |
+
cost_estimate = gr.Textbox(
|
825 |
+
label="Cost Estimate",
|
826 |
+
value="Select domains and examples to see estimate",
|
827 |
+
interactive=False
|
828 |
+
)
|
829 |
+
|
830 |
+
generate_btn = gr.Button(
|
831 |
+
"π Generate Dataset",
|
832 |
+
variant="primary",
|
833 |
+
size="lg"
|
834 |
+
)
|
835 |
+
|
836 |
+
with gr.Column(scale=2):
|
837 |
+
gr.Markdown("### π Progress & Results")
|
838 |
+
|
839 |
+
progress_output = gr.Textbox(
|
840 |
+
label="Generation Progress",
|
841 |
+
lines=15,
|
842 |
+
max_lines=20,
|
843 |
+
value="Ready to generate dataset...",
|
844 |
+
interactive=False
|
845 |
+
)
|
846 |
+
|
847 |
+
summary_output = gr.Textbox(
|
848 |
+
label="Generation Summary",
|
849 |
+
lines=3,
|
850 |
+
interactive=False
|
851 |
+
)
|
852 |
+
|
853 |
+
preview_output = gr.Markdown(
|
854 |
+
label="Dataset Preview",
|
855 |
+
value="Dataset preview will appear here..."
|
856 |
+
)
|
857 |
+
|
858 |
+
with gr.Row():
|
859 |
+
download_file = gr.File(
|
860 |
+
label="π₯ Download Generated Dataset",
|
861 |
+
interactive=False
|
862 |
+
)
|
863 |
+
|
864 |
+
file_list = gr.Textbox(
|
865 |
+
label="Generated Files",
|
866 |
+
placeholder="Files included in download will be listed here",
|
867 |
+
interactive=False
|
868 |
+
)
|
869 |
+
|
870 |
+
with gr.Tab("π Analyze Dataset"):
|
871 |
+
gr.Markdown("### π Dataset Analysis")
|
872 |
+
gr.Markdown("Upload a generated dataset zip file to analyze its quality and structure.")
|
873 |
+
|
874 |
+
with gr.Row():
|
875 |
+
with gr.Column():
|
876 |
+
upload_file = gr.File(
|
877 |
+
label="Upload Dataset Zip File",
|
878 |
+
file_types=[".zip"]
|
879 |
+
)
|
880 |
+
|
881 |
+
analyze_btn = gr.Button(
|
882 |
+
"π Analyze Dataset",
|
883 |
+
variant="secondary"
|
884 |
+
)
|
885 |
+
|
886 |
+
with gr.Column():
|
887 |
+
analysis_output = gr.Markdown(
|
888 |
+
label="Analysis Results",
|
889 |
+
value="Upload a dataset file to see analysis..."
|
890 |
+
)
|
891 |
+
|
892 |
+
with gr.Tab("βΉοΈ Information"):
|
893 |
+
gr.Markdown("""
|
894 |
+
### π How It Works
|
895 |
+
|
896 |
+
1. **Literature Simulation**: Creates realistic medical studies with proper abstracts, interventions, and outcomes
|
897 |
+
2. **Health Profile Generation**: Generates comprehensive health profiles based on study domains and severity levels
|
898 |
+
3. **AI Protocol Generation**: Uses OpenAI to create detailed health optimization protocols
|
899 |
+
4. **Dataset Export**: Outputs data in multiple formats including OpenAI fine-tuning format
|
900 |
+
|
901 |
+
### π― Output Files
|
902 |
+
|
903 |
+
- **`dataset.json`**: Complete raw dataset
|
904 |
+
- **`dataset_fine_tuning.jsonl`**: OpenAI fine-tuning format
|
905 |
+
- **`dataset_samples.json`**: Sample examples for review
|
906 |
+
- **`dataset_metadata.json`**: Generation statistics and info
|
907 |
+
|
908 |
+
### π° Cost Information
|
909 |
+
|
910 |
+
- **GPT-3.5-turbo**: ~$0.05 per example
|
911 |
+
- **GPT-4**: ~$0.25 per example
|
912 |
+
- **GPT-4-turbo**: ~$0.15 per example
|
913 |
+
|
914 |
+
### β οΈ Important Notes
|
915 |
+
|
916 |
+
- Generated content is for **research/educational purposes only**
|
917 |
+
- **Not medical advice** - always consult healthcare professionals
|
918 |
+
- Include appropriate medical disclaimers when using generated content
|
919 |
+
- Review sample outputs before using in production
|
920 |
+
|
921 |
+
### π§ Recommended Settings
|
922 |
+
|
923 |
+
- **Start small**: Generate 2-4 examples first to test quality
|
924 |
+
- **Use GPT-4**: Better quality than GPT-3.5-turbo
|
925 |
+
- **Rate limiting**: Use 2+ second delays to avoid API limits
|
926 |
+
- **Multiple domains**: Include diverse domains for comprehensive dataset
|
927 |
+
""")
|
928 |
+
|
929 |
+
# Event handlers
|
930 |
+
|
931 |
+
# Update cost estimate when inputs change
|
932 |
+
def update_cost_estimate(domains, examples_per_domain, model):
|
933 |
+
return self.estimate_cost(domains, examples_per_domain, model)
|
934 |
+
|
935 |
+
for input_component in [domains, examples_per_domain, model]:
|
936 |
+
input_component.change(
|
937 |
+
fn=update_cost_estimate,
|
938 |
+
inputs=[domains, examples_per_domain, model],
|
939 |
+
outputs=[cost_estimate]
|
940 |
+
)
|
941 |
+
|
942 |
+
# Generate dataset
|
943 |
+
generate_btn.click(
|
944 |
+
fn=self.generate_dataset_interface,
|
945 |
+
inputs=[api_key, domains, examples_per_domain, model, rate_limit],
|
946 |
+
outputs=[progress_output, summary_output, preview_output, download_file, file_list]
|
947 |
+
)
|
948 |
+
|
949 |
+
# Analyze dataset
|
950 |
+
analyze_btn.click(
|
951 |
+
fn=self.analyze_dataset_file,
|
952 |
+
inputs=[upload_file],
|
953 |
+
outputs=[analysis_output]
|
954 |
+
)
|
955 |
+
|
956 |
+
return interface
|
957 |
+
|
958 |
+
# =====================================================================
|
959 |
+
# STEP 4: LAUNCH THE INTERFACE
|
960 |
+
# =====================================================================
|
961 |
+
|
962 |
+
def main():
|
963 |
+
"""Launch the Gradio interface"""
|
964 |
+
|
965 |
+
print("π Launching Medical Literature Health Dataset Generator")
|
966 |
+
print("This will start a web interface accessible through your browser")
|
967 |
+
|
968 |
+
# Create interface
|
969 |
+
interface_creator = HealthDatasetGradioInterface()
|
970 |
+
interface = interface_creator.create_interface()
|
971 |
+
|
972 |
+
# Launch with configuration
|
973 |
+
interface.launch(
|
974 |
+
share=True, # Creates public link for sharing
|
975 |
+
server_name="0.0.0.0", # Makes it accessible from other devices
|
976 |
+
server_port=7860, # Default Gradio port
|
977 |
+
show_error=True, # Show detailed errors
|
978 |
+
quiet=False # Show startup info
|
979 |
+
)
|
980 |
+
|
981 |
+
if __name__ == "__main__":
|
982 |
+
main()
|
983 |
+
|
984 |
+
# For Google Colab, uncomment the following:
|
985 |
+
# main()
|