Spaces:
Runtime error
Runtime error
| import os | |
| import torch | |
| from fastapi import FastAPI | |
| from pydantic import BaseModel | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
| from peft import PeftModel, PeftConfig | |
| import uvicorn | |
| class Query(BaseModel): | |
| text: str | |
| app = FastAPI(title="Financial Chatbot API") | |
| # Load base model | |
| base_model_name = "meta-llama/Meta-Llama-3-8B" # Update this if different base model | |
| model = AutoModelForCausalLM.from_pretrained( | |
| base_model_name, | |
| device_map="auto", | |
| trust_remote_code=True | |
| ) | |
| # Load adapter from your checkpoint | |
| peft_model_id = "Phoenix21/llama-3-2-3b-finetuned-finance_checkpoint2" | |
| model = PeftModel.from_pretrained(model, peft_model_id) | |
| # Load tokenizer from base model | |
| tokenizer = AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True) | |
| tokenizer.pad_token = tokenizer.eos_token | |
| # Rest of your code remains the same... | |
| chat_pipe = pipeline( | |
| "text-generation", | |
| model=model, | |
| tokenizer=tokenizer, | |
| max_new_tokens=256, | |
| temperature=0.7, | |
| top_p=0.95, | |
| ) | |
| def generate(query: Query): | |
| prompt = f"Question: {query.text}\nAnswer: " | |
| response = chat_pipe(prompt)[0]["generated_text"] | |
| return {"response": response} | |
| if __name__ == "__main__": | |
| port = int(os.environ.get("PORT", 7860)) | |
| uvicorn.run(app, host="0.0.0.0", port=port) |