File size: 9,914 Bytes
4ec0915
 
aab72a2
4ec0915
 
 
 
 
 
 
 
 
 
 
 
 
aab72a2
4ec0915
189f4f3
4ec0915
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a82698
4ec0915
 
9a82698
f3bca8e
9a82698
 
 
 
 
 
 
 
 
55a8d3f
9a82698
 
55a8d3f
 
 
9a82698
 
aab72a2
9a82698
 
 
 
55a8d3f
4ec0915
9a82698
4ec0915
189f4f3
9a82698
 
 
f3bca8e
 
4ec0915
 
 
189f4f3
 
4ec0915
9a82698
4ec0915
 
 
9a82698
4ec0915
 
 
 
9a82698
4ec0915
 
 
 
 
 
 
 
 
 
 
189f4f3
4ec0915
 
 
189f4f3
4ec0915
 
9a82698
4ec0915
 
 
9a82698
 
 
 
 
 
 
 
 
 
 
 
4ec0915
 
 
 
 
 
9a82698
4ec0915
 
 
9a82698
4ec0915
 
9a82698
 
189f4f3
 
 
aab72a2
9a82698
 
 
aab72a2
9a82698
189f4f3
9a82698
 
 
189f4f3
9a82698
80a8bc4
 
189f4f3
4583bb0
9a82698
 
 
 
 
189f4f3
9a82698
 
 
189f4f3
4ec0915
189f4f3
 
 
4ec0915
 
 
 
 
aab72a2
 
9a82698
aab72a2
 
 
 
 
 
 
9a82698
189f4f3
aab72a2
 
 
 
 
 
9a82698
189f4f3
aab72a2
 
 
 
 
 
189f4f3
4ec0915
aab72a2
 
189f4f3
 
aab72a2
189f4f3
4ec0915
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
import logging
import re
from langchain.vectorstores import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_groq import ChatGroq
from langchain.schema import Document
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
import chardet
import gradio as gr
import pandas as pd
import json

# Enable logging for debugging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Function to clean the API key
def clean_api_key(key):
    return ''.join(c for c in key if ord(c) < 128)

# Load the GROQ API key from environment variables (set as a secret in the Space)
api_key = os.getenv("GROQ_API_KEY")
if not api_key:
    logger.error("GROQ_API_KEY environment variable is not set. Please add it as a secret.")
    raise ValueError("GROQ_API_KEY environment variable is not set. Please add it as a secret.")
api_key = clean_api_key(api_key).strip()  # Clean and strip whitespace

# Function to clean text by removing non-ASCII characters
def clean_text(text):
    return text.encode("ascii", errors="ignore").decode()

# Function to load and clean documents from multiple file formats
def load_documents(file_paths):
    docs = []
    for file_path in file_paths:
        ext = os.path.splitext(file_path)[-1].lower()
        try:
            if ext == ".csv":
                # Handle CSV files
                with open(file_path, 'rb') as f:
                    result = chardet.detect(f.read())
                    encoding = result['encoding']
                data = pd.read_csv(file_path, encoding=encoding)
                for index, row in data.iterrows():
                    content = clean_text(row.to_string())
                    docs.append(Document(page_content=content, metadata={"source": file_path}))
            elif ext == ".json":
                # Handle JSON files
                with open(file_path, 'r', encoding='utf-8') as f:
                    data = json.load(f)
                    if isinstance(data, list):
                        for entry in data:
                            content = clean_text(json.dumps(entry))
                            docs.append(Document(page_content=content, metadata={"source": file_path}))
                    elif isinstance(data, dict):
                        content = clean_text(json.dumps(data))
                        docs.append(Document(page_content=content, metadata={"source": file_path}))
            elif ext == ".txt":
                # Handle TXT files
                with open(file_path, 'r', encoding='utf-8') as f:
                    content = clean_text(f.read())
                    docs.append(Document(page_content=content, metadata={"source": file_path}))
            else:
                logger.warning(f"Unsupported file format: {file_path}")
        except Exception as e:
            logger.error(f"Error processing file {file_path}: {e}")
            logger.debug("Exception details:", exc_info=True)
    return docs

# Function to ensure the response ends with complete sentences
def ensure_complete_sentences(text):
    # Use regex to find all complete sentences
    sentences = re.findall(r'[^.!?]*[.!?]', text)
    if sentences:
        # Join all complete sentences to form the complete answer
        return ' '.join(sentences).strip()
    return text  # Return as is if no complete sentence is found

# Function to check if input is valid
def is_valid_input(text):
    """
    Checks if the input text is meaningful.
    Returns True if the text contains alphabetic characters and is of sufficient length.
    """
    if not text or text.strip() == "":
        return False
    # Regex to check for at least one alphabetic character
    if not re.search('[A-Za-z]', text):
        return False
    # Additional check: minimum length
    if len(text.strip()) < 5:
        return False
    return True

# Initialize the LLM using ChatGroq with GROQ's API
def initialize_llm(model, temperature, max_tokens):
    try:
        # Allocate a portion of tokens for the prompt
        prompt_allocation = int(max_tokens * 0.2)
        response_max_tokens = max_tokens - prompt_allocation
        if response_max_tokens <= 50:
            raise ValueError("max_tokens is too small to allocate for the response.")

        llm = ChatGroq(
            model=model,
            temperature=temperature,
            max_tokens=response_max_tokens,
            api_key=api_key
        )
        logger.info("LLM initialized successfully.")
        return llm
    except Exception as e:
        logger.error(f"Error initializing LLM: {e}")
        raise

# Create the RAG pipeline
def create_rag_pipeline(file_paths, model, temperature, max_tokens):
    try:
        llm = initialize_llm(model, temperature, max_tokens)
        docs = load_documents(file_paths)
        if not docs:
            logger.warning("No documents were loaded. Please check your file paths and formats.")
            return None, "No documents were loaded. Please check your file paths and formats."

        text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
        splits = text_splitter.split_documents(docs)

        # Initialize the embedding model
        embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")

        # Use a temporary directory for Chroma vectorstore
        vectorstore = Chroma.from_documents(
            documents=splits,
            embedding=embedding_model,
            persist_directory="/tmp/chroma_db"
        )
        vectorstore.persist()  # Save the database to disk
        logger.info("Vectorstore initialized and persisted successfully.")

        retriever = vectorstore.as_retriever()

        custom_prompt_template = PromptTemplate(
            input_variables=["context", "question"],
            template="""
            You are an AI assistant with expertise in daily wellness. Your aim is to provide detailed and comprehensive solutions regarding daily wellness topics without unnecessary verbosity.
            Context:
            {context}
            Question:
            {question}
            Provide a thorough and complete answer, including relevant examples and a suggested schedule. Ensure that the response does not end abruptly.
            """
        )

        rag_chain = RetrievalQA.from_chain_type(
            llm=llm,
            chain_type="stuff",
            retriever=retriever,
            chain_type_kwargs={"prompt": custom_prompt_template}
        )
        logger.info("RAG pipeline created successfully.")
        return rag_chain, "Pipeline created successfully."
    except Exception as e:
        logger.error(f"Error creating RAG pipeline: {e}")
        logger.debug("Exception details:", exc_info=True)
        return None, f"Error creating RAG pipeline: {e}"

# Initialize the RAG pipeline once at startup
file_paths = ['AIChatbot.csv']
model = "llama3-8b-8192"
temperature = 0.7
max_tokens = 500

rag_chain, message = create_rag_pipeline(file_paths, model, temperature, max_tokens)
if rag_chain is None:
    logger.error("Failed to initialize RAG pipeline at startup.")

# Function to answer questions with input validation and post-processing
def answer_question(model, temperature, max_tokens, question):
    # Validate input
    if not is_valid_input(question):
        logger.info("Received invalid input from user.")
        return "Please provide a valid question or input containing meaningful text."

    if rag_chain is None:
        logger.error("RAG pipeline is not initialized.")
        return "The system is currently unavailable. Please try again later."

    try:
        answer = rag_chain.run(question)
        logger.info("Question answered successfully.")
        # Post-process to ensure the answer ends with complete sentences
        complete_answer = ensure_complete_sentences(answer)
        return complete_answer
    except Exception as e_inner:
        logger.error(f"Error during RAG pipeline execution: {e_inner}")
        logger.debug("Exception details:", exc_info=True)
        return f"Error during RAG pipeline execution: {e_inner}"

# Gradio Interface (no feedback)
def gradio_interface(model, temperature, max_tokens, question):
    return answer_question(model, temperature, max_tokens, question)

# Define Gradio UI
interface = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.Textbox(
            label="Model Name",
            value=model,
            placeholder="e.g., llama3-8b-8192"
        ),
        gr.Slider(
            label="Temperature",
            minimum=0,
            maximum=1,
            step=0.01,
            value=temperature,
            info="Controls the randomness of the response. Higher values make output more random."
        ),
        gr.Slider(
            label="Max Tokens",
            minimum=200,
            maximum=2048,
            step=1,
            value=max_tokens,
            info="Determines the maximum number of tokens in the response."
        ),
        gr.Textbox(
            label="Question",
            placeholder="e.g., What is box breathing and how does it help reduce anxiety?"
        )
    ],
    outputs="text",
    title="Daily Wellness AI",
    description="Ask questions about daily wellness and get detailed solutions.",
    examples=[
        ["llama3-8b-8192", 0.7, 500, "What is box breathing and how does it help reduce anxiety?"],
        ["llama3-8b-8192", 0.6, 600, "Provide a daily wellness schedule incorporating box breathing techniques."]
    ],
    allow_flagging="never"
)

if __name__ == "__main__":
    interface.launch(server_name="0.0.0.0", server_port=7860, debug=True)