Create pipeline.py
Browse files- pipeline.py +169 -0
pipeline.py
ADDED
|
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# pipeline.py
|
| 2 |
+
import os
|
| 3 |
+
import getpass
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from typing import Optional
|
| 6 |
+
|
| 7 |
+
from langchain.docstore.document import Document
|
| 8 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 9 |
+
from langchain.vectorstores import FAISS
|
| 10 |
+
from langchain.chains import RetrievalQA
|
| 11 |
+
|
| 12 |
+
from smolagents import CodeAgent, DuckDuckGoSearchTool, ManagedAgent, LiteLLMModel
|
| 13 |
+
import litellm
|
| 14 |
+
|
| 15 |
+
# We import the chain builders from our separate files
|
| 16 |
+
from classification_chain import get_classification_chain
|
| 17 |
+
from refusal_chain import get_refusal_chain
|
| 18 |
+
from tailor_chain import get_tailor_chain
|
| 19 |
+
from cleaner_chain import get_cleaner_chain, CleanerChain
|
| 20 |
+
|
| 21 |
+
# We also import the relevant RAG logic here or define it directly
|
| 22 |
+
# (We define build_rag_chain in this file for clarity)
|
| 23 |
+
|
| 24 |
+
###############################################################################
|
| 25 |
+
# 1) Environment: set up keys if missing
|
| 26 |
+
###############################################################################
|
| 27 |
+
if not os.environ.get("GEMINI_API_KEY"):
|
| 28 |
+
os.environ["GEMINI_API_KEY"] = getpass.getpass("Enter your Gemini API Key: ")
|
| 29 |
+
if not os.environ.get("GROQ_API_KEY"):
|
| 30 |
+
os.environ["GROQ_API_KEY"] = getpass.getpass("Enter your GROQ API Key: ")
|
| 31 |
+
|
| 32 |
+
###############################################################################
|
| 33 |
+
# 2) build_or_load_vectorstore
|
| 34 |
+
###############################################################################
|
| 35 |
+
def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS:
|
| 36 |
+
if os.path.exists(store_dir):
|
| 37 |
+
print(f"DEBUG: Found existing FAISS store at '{store_dir}'. Loading...")
|
| 38 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
|
| 39 |
+
vectorstore = FAISS.load_local(store_dir, embeddings)
|
| 40 |
+
return vectorstore
|
| 41 |
+
else:
|
| 42 |
+
print(f"DEBUG: Building new store from CSV: {csv_path}")
|
| 43 |
+
df = pd.read_csv(csv_path)
|
| 44 |
+
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
|
| 45 |
+
df.columns = df.columns.str.strip()
|
| 46 |
+
if "Answer" in df.columns:
|
| 47 |
+
df.rename(columns={"Answer": "Answers"}, inplace=True)
|
| 48 |
+
if "Question" not in df.columns and "Question " in df.columns:
|
| 49 |
+
df.rename(columns={"Question ": "Question"}, inplace=True)
|
| 50 |
+
if "Question" not in df.columns or "Answers" not in df.columns:
|
| 51 |
+
raise ValueError("CSV must have 'Question' and 'Answers' columns.")
|
| 52 |
+
docs = []
|
| 53 |
+
for _, row in df.iterrows():
|
| 54 |
+
q = str(row["Question"])
|
| 55 |
+
ans = str(row["Answers"])
|
| 56 |
+
doc = Document(page_content=ans, metadata={"question": q})
|
| 57 |
+
docs.append(doc)
|
| 58 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
|
| 59 |
+
vectorstore = FAISS.from_documents(docs, embedding=embeddings)
|
| 60 |
+
vectorstore.save_local(store_dir)
|
| 61 |
+
return vectorstore
|
| 62 |
+
|
| 63 |
+
###############################################################################
|
| 64 |
+
# 3) Build RAG chain for Gemini
|
| 65 |
+
###############################################################################
|
| 66 |
+
from langchain.llms.base import LLM
|
| 67 |
+
def build_rag_chain(llm_model: LiteLLMModel, vectorstore: FAISS) -> RetrievalQA:
|
| 68 |
+
class GeminiLangChainLLM(LLM):
|
| 69 |
+
def _call(self, prompt: str, stop: Optional[list] = None, **kwargs) -> str:
|
| 70 |
+
messages = [{"role": "user", "content": prompt}]
|
| 71 |
+
return llm_model(messages, stop_sequences=stop)
|
| 72 |
+
@property
|
| 73 |
+
def _llm_type(self) -> str:
|
| 74 |
+
return "custom_gemini"
|
| 75 |
+
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
| 76 |
+
gemini_as_llm = GeminiLangChainLLM()
|
| 77 |
+
rag_chain = RetrievalQA.from_chain_type(
|
| 78 |
+
llm=gemini_as_llm,
|
| 79 |
+
chain_type="stuff",
|
| 80 |
+
retriever=retriever,
|
| 81 |
+
return_source_documents=True
|
| 82 |
+
)
|
| 83 |
+
return rag_chain
|
| 84 |
+
|
| 85 |
+
###############################################################################
|
| 86 |
+
# 4) Initialize all the separate chains
|
| 87 |
+
###############################################################################
|
| 88 |
+
# Classification chain
|
| 89 |
+
classification_chain = get_classification_chain()
|
| 90 |
+
# Refusal chain
|
| 91 |
+
refusal_chain = get_refusal_chain()
|
| 92 |
+
# Tailor chain
|
| 93 |
+
tailor_chain = get_tailor_chain()
|
| 94 |
+
# Cleaner chain
|
| 95 |
+
cleaner_chain = get_cleaner_chain()
|
| 96 |
+
|
| 97 |
+
###############################################################################
|
| 98 |
+
# 5) Build our vectorstores + RAG chains
|
| 99 |
+
###############################################################################
|
| 100 |
+
wellness_csv = "AIChatbot.csv"
|
| 101 |
+
brand_csv = "BrandAI.csv"
|
| 102 |
+
wellness_store_dir = "faiss_wellness_store"
|
| 103 |
+
brand_store_dir = "faiss_brand_store"
|
| 104 |
+
|
| 105 |
+
wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir)
|
| 106 |
+
brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir)
|
| 107 |
+
|
| 108 |
+
gemini_llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY"))
|
| 109 |
+
wellness_rag_chain = build_rag_chain(gemini_llm, wellness_vectorstore)
|
| 110 |
+
brand_rag_chain = build_rag_chain(gemini_llm, brand_vectorstore)
|
| 111 |
+
|
| 112 |
+
###############################################################################
|
| 113 |
+
# 6) Tools / Agents for web search
|
| 114 |
+
###############################################################################
|
| 115 |
+
search_tool = DuckDuckGoSearchTool()
|
| 116 |
+
web_agent = CodeAgent(tools=[search_tool], model=gemini_llm)
|
| 117 |
+
managed_web_agent = ManagedAgent(agent=web_agent, name="web_search", description="Runs web search for you.")
|
| 118 |
+
manager_agent = CodeAgent(tools=[], model=gemini_llm, managed_agents=[managed_web_agent])
|
| 119 |
+
|
| 120 |
+
def do_web_search(query: str) -> str:
|
| 121 |
+
print("DEBUG: Attempting web search for more info...")
|
| 122 |
+
search_query = f"Give me relevant info: {query}"
|
| 123 |
+
response = manager_agent.run(search_query)
|
| 124 |
+
return response
|
| 125 |
+
|
| 126 |
+
###############################################################################
|
| 127 |
+
# 7) Orchestrator: run_with_chain
|
| 128 |
+
###############################################################################
|
| 129 |
+
def run_with_chain(query: str) -> str:
|
| 130 |
+
print("DEBUG: Starting run_with_chain...")
|
| 131 |
+
# 1) Classify
|
| 132 |
+
class_result = classification_chain.invoke({"query": query})
|
| 133 |
+
classification = class_result.get("text", "").strip()
|
| 134 |
+
print("DEBUG: Classification =>", classification)
|
| 135 |
+
|
| 136 |
+
# If OutOfScope => refusal => tailor => return
|
| 137 |
+
if classification == "OutOfScope":
|
| 138 |
+
refusal_text = refusal_chain.run({})
|
| 139 |
+
final_refusal = tailor_chain.run({"response": refusal_text})
|
| 140 |
+
return final_refusal.strip()
|
| 141 |
+
|
| 142 |
+
# If Wellness => wellness RAG => if insufficient => web => unify => tailor
|
| 143 |
+
if classification == "Wellness":
|
| 144 |
+
rag_result = wellness_rag_chain({"query": query})
|
| 145 |
+
csv_answer = rag_result["result"].strip()
|
| 146 |
+
if not csv_answer:
|
| 147 |
+
web_answer = do_web_search(query)
|
| 148 |
+
else:
|
| 149 |
+
lower_ans = csv_answer.lower()
|
| 150 |
+
if any(phrase in lower_ans for phrase in ["i do not know", "not sure", "no context", "cannot answer"]):
|
| 151 |
+
web_answer = do_web_search(query)
|
| 152 |
+
else:
|
| 153 |
+
web_answer = ""
|
| 154 |
+
final_merged = cleaner_chain.merge(kb=csv_answer, web=web_answer)
|
| 155 |
+
final_answer = tailor_chain.run({"response": final_merged})
|
| 156 |
+
return final_answer.strip()
|
| 157 |
+
|
| 158 |
+
# If Brand => brand RAG => tailor => return
|
| 159 |
+
if classification == "Brand":
|
| 160 |
+
rag_result = brand_rag_chain({"query": query})
|
| 161 |
+
csv_answer = rag_result["result"].strip()
|
| 162 |
+
final_merged = cleaner_chain.merge(kb=csv_answer, web="")
|
| 163 |
+
final_answer = tailor_chain.run({"response": final_merged})
|
| 164 |
+
return final_answer.strip()
|
| 165 |
+
|
| 166 |
+
# fallback
|
| 167 |
+
refusal_text = refusal_chain.run({})
|
| 168 |
+
final_refusal = tailor_chain.run({"response": refusal_text})
|
| 169 |
+
return final_refusal.strip()
|