import gradio as gr from pipeline import run_with_chain # Import the updated pipeline function # Define a function that connects the Gradio interface to the pipeline def ask_dailywellness(query: str) -> str: try: # Call the run_with_chain function that processes the query response = run_with_chain(query) return response except Exception as e: return f"Error processing your request: {str(e)}" # Define the Gradio interface interface = gr.Interface( fn=ask_dailywellness, inputs=gr.Textbox(lines=2, label="Ask DailyWellnessAI"), outputs=gr.Textbox(label="DailyWellnessAI Answer"), title="DailyWellnessAI", description="Ask about wellness or DailyWellnessAI brand. Out-of-scope queries will be redirected with relevant information." ) if __name__ == "__main__": # Launch the Gradio interface with a server interface.launch(server_name="0.0.0.0", server_port=7860, share=True)