import os import getpass import spacy import pandas as pd from typing import Optional import subprocess from langchain.llms.base import LLM from langchain.docstore.document import Document from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.chains import RetrievalQA from smolagents import CodeAgent, DuckDuckGoSearchTool, ManagedAgent, LiteLLMModel from pydantic_ai import Agent # Import Pydantic AI's Agent from mistralai import Mistral import asyncio # Needed for managing async tasks # Initialize Mistral API client mistral_api_key = os.environ.get("MISTRAL_API_KEY") client = Mistral(api_key=mistral_api_key) # Initialize Pydantic AI Agent (for text validation) pydantic_agent = Agent('mistral:mistral-large-latest', result_type=str) # Load spaCy model for NER and download it if not already installed def install_spacy_model(): try: spacy.load("en_core_web_sm") print("spaCy model 'en_core_web_sm' is already installed.") except OSError: print("Downloading spaCy model 'en_core_web_sm'...") subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"], check=True) print("spaCy model 'en_core_web_sm' downloaded successfully.") install_spacy_model() nlp = spacy.load("en_core_web_sm") # Function to extract the main topic from the query using spaCy NER def extract_main_topic(query: str) -> str: doc = nlp(query) main_topic = None for ent in doc.ents: if ent.label_ in ["ORG", "PRODUCT", "PERSON", "GPE", "TIME"]: main_topic = ent.text break if not main_topic: for token in doc: if token.pos_ in ["NOUN", "PROPN"]: main_topic = token.text break return main_topic if main_topic else "this topic" # Function to classify query based on wellness topics def classify_query(query: str) -> str: wellness_keywords = ["box breathing", "meditation", "yoga", "mindfulness", "breathing exercises"] if any(keyword in query.lower() for keyword in wellness_keywords): return "Wellness" class_result = classification_chain.invoke({"query": query}) classification = class_result.get("text", "").strip() return classification if classification != "OutOfScope" else "OutOfScope" # Function to moderate text using Mistral moderation API (async version) async def moderate_text(query: str) -> str: try: await pydantic_agent.run(query) # Use async run for Pydantic validation except Exception as e: print(f"Error validating text: {e}") return "Invalid text format." response = await client.classifiers.moderate_chat( model="mistral-moderation-latest", inputs=[{"role": "user", "content": query}] ) categories = response['results'][0]['categories'] if categories.get("violence_and_threats", False) or \ categories.get("hate_and_discrimination", False) or \ categories.get("dangerous_and_criminal_content", False) or \ categories.get("selfharm", False): return "OutOfScope" return query # Use the event loop to run the async functions properly async def run_async_pipeline(query: str) -> str: # Moderate the query for harmful content (async) moderated_query = await moderate_text(query) if moderated_query == "OutOfScope": return "Sorry, this query contains harmful or inappropriate content." # Classify the query manually classification = classify_query(moderated_query) if classification == "OutOfScope": refusal_text = refusal_chain.run({"topic": "this topic"}) final_refusal = tailor_chain.run({"response": refusal_text}) return final_refusal.strip() if classification == "Wellness": rag_result = wellness_rag_chain({"query": moderated_query}) csv_answer = rag_result["result"].strip() web_answer = "" # Empty if we found an answer from the knowledge base if not csv_answer: web_answer = await do_web_search(moderated_query) final_merged = cleaner_chain.merge(kb=csv_answer, web=web_answer) final_answer = tailor_chain.run({"response": final_merged}) return final_answer.strip() if classification == "Brand": rag_result = brand_rag_chain({"query": moderated_query}) csv_answer = rag_result["result"].strip() final_merged = cleaner_chain.merge(kb=csv_answer, web="") final_answer = tailor_chain.run({"response": final_merged}) return final_answer.strip() refusal_text = refusal_chain.run({"topic": "this topic"}) final_refusal = tailor_chain.run({"response": refusal_text}) return final_refusal.strip() # Run the pipeline with the event loop def run_with_chain(query: str) -> str: return asyncio.run(run_async_pipeline(query))