import os import getpass import spacy import pandas as pd import numpy as np from typing import Optional, List, Dict, Any import subprocess from langchain.llms.base import LLM from langchain.docstore.document import Document from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.chains import RetrievalQA from smolagents import DuckDuckGoSearchTool, ManagedAgent, LiteLLMModel ,CodeAgent, HfApiModel from pydantic import BaseModel, Field, ValidationError, validator from mistralai import Mistral # Import Google Gemini model from langchain_google_genai import ChatGoogleGenerativeAI from classification_chain import get_classification_chain from cleaner_chain import get_cleaner_chain from refusal_chain import get_refusal_chain from tailor_chain import get_tailor_chain from prompts import classification_prompt, refusal_prompt, tailor_prompt LANGSMITH_TRACING=True LANGSMITH_ENDPOINT="https://api.smith.langchain.com" LANGSMITH_API_KEY=os.environ.get("LANGSMITH_API_KEY") LANGSMITH_PROJECT=os.environ.get("LANGCHAIN_PROJECT") # Initialize Mistral API client mistral_api_key = os.environ.get("MISTRAL_API_KEY") client = Mistral(api_key=mistral_api_key) # Setup ChatGoogleGenerativeAI for Gemini # Ensure GEMINI_API_KEY is set in your environment variables. gemini_llm = ChatGoogleGenerativeAI( model="gemini-1.5-pro", temperature=0.5, max_retries=2, google_api_key=os.environ.get("GEMINI_API_KEY"), # Additional parameters or safety_settings can be added here if needed ) # web_gemini_llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY")) ################################################################################ # Pydantic Models ################################################################################ class QueryInput(BaseModel): query: str = Field(..., min_length=1, description="The input query string") @validator('query') def check_query_is_string(cls, v): if not isinstance(v, str): raise ValueError("Query must be a valid string") if v.strip() == "": raise ValueError("Query cannot be empty or just whitespace") return v.strip() class ModerationResult(BaseModel): is_safe: bool = Field(..., description="Whether the content is safe") categories: Dict[str, bool] = Field(default_factory=dict, description="Detected content categories") original_text: str = Field(..., description="The original input text") ################################################################################ # SPACy Setup ################################################################################ def install_spacy_model(): try: spacy.load("en_core_web_sm") print("spaCy model 'en_core_web_sm' is already installed.") except OSError: print("Downloading spaCy model 'en_core_web_sm'...") subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"], check=True) print("spaCy model 'en_core_web_sm' downloaded successfully.") install_spacy_model() nlp = spacy.load("en_core_web_sm") ################################################################################ # Utility Functions ################################################################################ def sanitize_message(message: Any) -> str: """Sanitize message input to ensure it's a valid string.""" try: if hasattr(message, 'content'): return str(message.content).strip() if isinstance(message, dict) and 'content' in message: return str(message['content']).strip() if isinstance(message, list) and len(message) > 0: if isinstance(message[0], dict) and 'content' in message[0]: return str(message[0]['content']).strip() if hasattr(message[0], 'content'): return str(message[0].content).strip() return str(message).strip() except Exception as e: raise RuntimeError(f"Error in sanitize function: {str(e)}") def extract_main_topic(query: str) -> str: """Extracts a main topic (named entity or noun) from the user query.""" try: query_input = QueryInput(query=query) doc = nlp(query_input.query) main_topic = None # Attempt to find an entity for ent in doc.ents: if ent.label_ in ["ORG", "PRODUCT", "PERSON", "GPE", "TIME"]: main_topic = ent.text break # If no named entity, fall back to nouns or proper nouns if not main_topic: for token in doc: if token.pos_ in ["NOUN", "PROPN"]: main_topic = token.text break return main_topic if main_topic else "this topic" except Exception as e: print(f"Error extracting main topic: {e}") return "this topic" def moderate_text(query: str) -> ModerationResult: """Uses Mistral's moderation to determine if the content is safe.""" try: query_input = QueryInput(query=query) response = client.classifiers.moderate_chat( model="mistral-moderation-latest", inputs=[{"role": "user", "content": query_input.query}] ) is_safe = True categories = {} if hasattr(response, 'results') and response.results: categories = { "violence": response.results[0].categories.get("violence_and_threats", False), "hate": response.results[0].categories.get("hate_and_discrimination", False), "dangerous": response.results[0].categories.get("dangerous_and_criminal_content", False), "selfharm": response.results[0].categories.get("selfharm", False) } # If any flagged category is True, then not safe is_safe = not any(categories.values()) return ModerationResult( is_safe=is_safe, categories=categories, original_text=query_input.query ) except ValidationError as e: raise ValueError(f"Input validation failed: {str(e)}") except Exception as e: raise RuntimeError(f"Moderation failed: {str(e)}") def classify_query(query: str) -> str: """Classify user query into known categories using your classification chain.""" try: query_input = QueryInput(query=query) # Quick pattern-based approach for 'Wellness' # wellness_keywords = ["box breathing", "meditation", "yoga", "mindfulness", "breathing exercises"] wellness_keywords=[] if any(keyword in query_input.query.lower() for keyword in wellness_keywords): return "Wellness" # Use chain for everything else class_result = classification_chain.invoke({"query": query_input.query}) print(class_result) # classification = class_result.get("text", "").strip() classification=class_result return classification if classification != "" else "OutOfScope" except ValidationError as e: raise ValueError(f"Classification input validation failed: {str(e)}") except Exception as e: raise RuntimeError(f"Classification failed: {str(e)}") ################################################################################ # Vector Store Building/Loading ################################################################################ def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS: try: if os.path.exists(store_dir): print(f"DEBUG: Found existing FAISS store at '{store_dir}'. Loading...") embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1") vectorstore = FAISS.load_local(store_dir, embeddings) return vectorstore else: print(f"DEBUG: Building new store from CSV: {csv_path}") df = pd.read_csv(csv_path) df = df.loc[:, ~df.columns.str.contains('^Unnamed')] df.columns = df.columns.str.strip() if "Answer" in df.columns: df.rename(columns={"Answer": "Answers"}, inplace=True) if "Question" not in df.columns and "Question " in df.columns: df.rename(columns={"Question ": "Question"}, inplace=True) if "Question" not in df.columns or "Answers" not in df.columns: raise ValueError("CSV must have 'Question' and 'Answers' columns.") docs = [] for _, row in df.iterrows(): q = str(row["Question"]) ans = str(row["Answers"]) doc = Document(page_content=ans, metadata={"question": q}) docs.append(doc) embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1") vectorstore = FAISS.from_documents(docs, embedding=embeddings) vectorstore.save_local(store_dir) return vectorstore except Exception as e: raise RuntimeError(f"Error building/loading vector store: {str(e)}") def build_rag_chain(vectorstore: FAISS) -> RetrievalQA: """Build RAG chain using the Gemini LLM directly without a custom class.""" try: retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3}) chain = RetrievalQA.from_chain_type( llm=gemini_llm, # Directly use the ChatGoogleGenerativeAI instance chain_type="stuff", retriever=retriever, return_source_documents=True ) return chain except Exception as e: raise RuntimeError(f"Error building RAG chain: {str(e)}") ################################################################################ # Web Search Caching: Separate FAISS Vector Store ################################################################################ # Directory for storing cached web search results web_search_store_dir = "faiss_websearch_store" def build_or_load_websearch_store(store_dir: str) -> FAISS: """ Builds or loads a FAISS vector store for caching web search results. Each Document will have page_content as the search result text, and metadata={"question": }. """ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1") if os.path.exists(store_dir): print(f"DEBUG: Found existing WebSearch FAISS store at '{store_dir}'. Loading...") return FAISS.load_local(store_dir, embeddings) else: print(f"DEBUG: Creating a new, empty WebSearch FAISS store at '{store_dir}'...") # Start empty empty_store = FAISS.from_texts([""], embeddings, metadatas=[{"question": "placeholder"}]) # Remove the placeholder doc so we don't retrieve it empty_store.index.reset() empty_store.docstore._dict = {} empty_store.save_local(store_dir) return empty_store # Initialize the web search vector store web_search_vectorstore = build_or_load_websearch_store(web_search_store_dir) websearch_embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1") def compute_cosine_similarity(vec_a: List[float], vec_b: List[float]) -> float: """Compute cosine similarity between two embedding vectors.""" a = np.array(vec_a, dtype=float) b = np.array(vec_b, dtype=float) return float(np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b) + 1e-10)) def get_cached_websearch(query: str, threshold: float = 0.8) -> Optional[str]: """ Attempts to retrieve a cached web search result for a given query. If the top retrieved document has a cosine similarity >= threshold, returns that document's page_content. Otherwise, returns None. """ # Retrieve the top doc from the store retriever = web_search_vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 1}) results = retriever.get_relevant_documents(query) if not results: return None # Compare similarity with the top doc top_doc = results[0] query_vec = websearch_embeddings.embed_query(query) doc_vec = websearch_embeddings.embed_query(top_doc.page_content) similarity = compute_cosine_similarity(query_vec, doc_vec) if similarity >= threshold: print(f"DEBUG: Using cached web search (similarity={similarity:.2f} >= {threshold})") return top_doc.page_content print(f"DEBUG: Cached doc similarity={similarity:.2f} < {threshold}, not reusing.") return None def store_websearch_result(query: str, web_search_text: str): """ Embeds and stores the web search result text in the web search vector store, keyed by the question in metadata. Then saves the store locally. """ if not web_search_text.strip(): return # Don't store empty results doc = Document(page_content=web_search_text, metadata={"question": query}) web_search_vectorstore.add_documents([doc], embedding=websearch_embeddings) web_search_vectorstore.save_local(web_search_store_dir) def do_cached_web_search(query: str) -> str: """Perform a DuckDuckGo web search, but with caching via FAISS vector store.""" # 1) Check cache cached_result = get_cached_websearch(query) if cached_result: return cached_result # 2) If no suitable cached answer, do a new search try: print("DEBUG: Performing a new web search...") # model = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY")) model=HfApiModel() search_tool = DuckDuckGoSearchTool() web_agent = CodeAgent( tools=[search_tool], model=model ) managed_web_agent = ManagedAgent( agent=web_agent, name="web_search", description="Runs a web search for you. Provide your query as an argument." ) manager_agent = CodeAgent( tools=[], # If you have additional tools for the manager, add them here model=model, managed_agents=[managed_web_agent] ) new_search_result = manager_agent.run(f"Search for information about: {query}") # 3) Store in cache for future reuse store_websearch_result(query, new_search_result) return str(new_search_result).strip() except Exception as e: print(f"Web search failed: {e}") return "" ################################################################################ # Response Merging ################################################################################ def merge_responses(csv_answer: str, web_answer: str) -> str: """Merge CSV-based RAG result with web search results.""" try: if not csv_answer and not web_answer: return "I apologize, but I couldn't find any relevant information." if not web_answer: return csv_answer if not csv_answer: return web_answer return f"{csv_answer}\n\nAdditional information from web search:\n{web_answer}" except Exception as e: print(f"Error merging responses: {e}") return csv_answer or web_answer or "I apologize, but I couldn't process the information properly." ################################################################################ # Main Pipeline ################################################################################ def run_pipeline(query: str) -> str: """ Pipeline logic to: 1) Sanitize & moderate the query 2) Classify the query (OutOfScope, Wellness, Brand, etc.) 3) If safe & in scope, do RAG + ALWAYS do a cached web search 4) Merge responses and tailor final output """ try: print(query) sanitized_query = sanitize_message(query) query_input = QueryInput(query=sanitized_query) topic = extract_main_topic(query_input.query) moderation_result = moderate_text(query_input.query) # Check for unsafe content if not moderation_result.is_safe: return "Sorry, this query contains harmful or inappropriate content." # Classify classification = classify_query(moderation_result.original_text) # If out-of-scope, refuse if classification == "OutOfScope": refusal_text = refusal_chain.invoke({"topic": topic,"query":query}) return tailor_chain.run({"response": refusal_text}).strip() # Otherwise, do a RAG query and also do a web search (cached) if classification == "Wellness": # RAG from wellness store rag_result = wellness_rag_chain({"query": moderation_result.original_text}) csv_answer = rag_result.get("result", "").strip() if isinstance(rag_result, dict) else str(rag_result).strip() # Always do a (cached) web search web_answer = do_cached_web_search(moderation_result.original_text) # Merge CSV & Web final_merged = merge_responses(csv_answer, web_answer) return tailor_chain.run({"response": final_merged}).strip() if classification == "Brand": # RAG from brand store rag_result = brand_rag_chain({"query": moderation_result.original_text}) csv_answer = rag_result.get("result", "").strip() if isinstance(rag_result, dict) else str(rag_result).strip() # Always do a (cached) web search web_answer = do_cached_web_search(moderation_result.original_text) # Merge CSV & Web final_merged = merge_responses(csv_answer, web_answer) return tailor_chain.run({"response": final_merged}).strip() # If it doesn't fall under known categories, return refusal by default. refusal_text = refusal_chain.invoke({"topic": topic,"query":query}) return tailor_chain.run({"response": refusal_text}).strip() except ValidationError as e: raise ValueError(f"Input validation failed: {str(e)}") except Exception as e: raise RuntimeError(f"Error in run_pipeline: {str(e)}") def run_with_chain(query: str) -> str: """Convenience function to run the main pipeline and handle errors gracefully.""" try: return run_pipeline(query) except Exception as e: print(f"Error in run_with_chain: {str(e)}") return "I apologize, but I encountered an error processing your request. Please try again." ################################################################################ # Chain & Vectorstore Initialization ################################################################################ # Load your classification/refusal/tailor/cleaner chains classification_chain = get_classification_chain() refusal_chain = get_refusal_chain() tailor_chain = get_tailor_chain() cleaner_chain = get_cleaner_chain() # CSV file paths and store directories for RAG wellness_csv = "AIChatbot.csv" brand_csv = "BrandAI.csv" wellness_store_dir = "faiss_wellness_store" brand_store_dir = "faiss_brand_store" # Build or load the vector stores wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir) brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir) # Build RAG chains wellness_rag_chain = build_rag_chain(wellness_vectorstore) brand_rag_chain = build_rag_chain(brand_vectorstore) print("Pipeline initialized successfully! Ready to handle querie with caching.")