Spaces:
Sleeping
Sleeping
to handel pydantic error
Browse files- pipeline.py +115 -53
pipeline.py
CHANGED
|
@@ -9,12 +9,13 @@ from langchain.docstore.document import Document
|
|
| 9 |
from langchain.embeddings import HuggingFaceEmbeddings
|
| 10 |
from langchain.vectorstores import FAISS
|
| 11 |
from langchain.chains import RetrievalQA
|
| 12 |
-
from smolagents import
|
| 13 |
from pydantic import BaseModel, Field, ValidationError, validator
|
| 14 |
from mistralai import Mistral
|
| 15 |
-
from langchain.prompts import PromptTemplate
|
| 16 |
|
| 17 |
-
# Import
|
|
|
|
|
|
|
| 18 |
from classification_chain import get_classification_chain
|
| 19 |
from cleaner_chain import get_cleaner_chain
|
| 20 |
from refusal_chain import get_refusal_chain
|
|
@@ -25,10 +26,25 @@ from prompts import classification_prompt, refusal_prompt, tailor_prompt
|
|
| 25 |
mistral_api_key = os.environ.get("MISTRAL_API_KEY")
|
| 26 |
client = Mistral(api_key=mistral_api_key)
|
| 27 |
|
| 28 |
-
#
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
# Pydantic models for validation and type safety
|
| 32 |
class QueryInput(BaseModel):
|
| 33 |
query: str = Field(..., min_length=1, description="The input query string")
|
| 34 |
|
|
@@ -45,7 +61,6 @@ class ModerationResult(BaseModel):
|
|
| 45 |
categories: Dict[str, bool] = Field(default_factory=dict, description="Detected content categories")
|
| 46 |
original_text: str = Field(..., description="The original input text")
|
| 47 |
|
| 48 |
-
# Load spaCy model for NER
|
| 49 |
def install_spacy_model():
|
| 50 |
try:
|
| 51 |
spacy.load("en_core_web_sm")
|
|
@@ -58,6 +73,22 @@ def install_spacy_model():
|
|
| 58 |
install_spacy_model()
|
| 59 |
nlp = spacy.load("en_core_web_sm")
|
| 60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
def extract_main_topic(query: str) -> str:
|
| 62 |
try:
|
| 63 |
query_input = QueryInput(query=query)
|
|
@@ -160,55 +191,76 @@ def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS:
|
|
| 160 |
except Exception as e:
|
| 161 |
raise RuntimeError(f"Error building/loading vector store: {str(e)}")
|
| 162 |
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
|
|
|
|
|
|
| 173 |
try:
|
| 174 |
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
llm=
|
| 178 |
chain_type="stuff",
|
| 179 |
retriever=retriever,
|
| 180 |
return_source_documents=True
|
| 181 |
)
|
|
|
|
| 182 |
except Exception as e:
|
| 183 |
raise RuntimeError(f"Error building RAG chain: {str(e)}")
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
def sanitize_message(message: Any) -> str:
|
| 187 |
-
"""Sanitize message input to ensure it's a valid string."""
|
| 188 |
try:
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
return str(message)
|
| 194 |
except Exception as e:
|
| 195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
def run_pipeline(query: str) -> str:
|
| 199 |
try:
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
raise RuntimeError(f"Error in run_runpipeline check classify_query: {str(e)}")
|
| 212 |
|
| 213 |
if classification == "OutOfScope":
|
| 214 |
refusal_text = refusal_chain.run({"topic": topic})
|
|
@@ -216,22 +268,37 @@ def run_pipeline(query: str) -> str:
|
|
| 216 |
|
| 217 |
if classification == "Wellness":
|
| 218 |
rag_result = wellness_rag_chain({"query": moderation_result.original_text})
|
| 219 |
-
|
|
|
|
|
|
|
|
|
|
| 220 |
web_answer = "" if csv_answer else do_web_search(moderation_result.original_text)
|
| 221 |
final_merged = merge_responses(csv_answer, web_answer)
|
| 222 |
return tailor_chain.run({"response": final_merged}).strip()
|
| 223 |
|
| 224 |
if classification == "Brand":
|
| 225 |
rag_result = brand_rag_chain({"query": moderation_result.original_text})
|
| 226 |
-
|
|
|
|
|
|
|
|
|
|
| 227 |
final_merged = merge_responses(csv_answer, "")
|
| 228 |
return tailor_chain.run({"response": final_merged}).strip()
|
| 229 |
|
| 230 |
refusal_text = refusal_chain.run({"topic": topic})
|
| 231 |
return tailor_chain.run({"response": refusal_text}).strip()
|
| 232 |
-
except Exception as e:
|
| 233 |
-
raise RuntimeError(f"Error in run_runpipeline: {str(e)}")
|
| 234 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
|
| 236 |
# Initialize chains and vectorstores
|
| 237 |
classification_chain = get_classification_chain()
|
|
@@ -247,12 +314,7 @@ brand_store_dir = "faiss_brand_store"
|
|
| 247 |
wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir)
|
| 248 |
brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir)
|
| 249 |
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
brand_rag_chain = build_rag_chain(gemini_llm, brand_vectorstore)
|
| 253 |
|
| 254 |
print("Pipeline initialized successfully!")
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
def run_with_chain(query: str) -> str:
|
| 258 |
-
return run_pipeline(query)
|
|
|
|
| 9 |
from langchain.embeddings import HuggingFaceEmbeddings
|
| 10 |
from langchain.vectorstores import FAISS
|
| 11 |
from langchain.chains import RetrievalQA
|
| 12 |
+
from smolagents import DuckDuckGoSearchTool, ManagedAgent
|
| 13 |
from pydantic import BaseModel, Field, ValidationError, validator
|
| 14 |
from mistralai import Mistral
|
|
|
|
| 15 |
|
| 16 |
+
# Import Google Gemini model
|
| 17 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 18 |
+
|
| 19 |
from classification_chain import get_classification_chain
|
| 20 |
from cleaner_chain import get_cleaner_chain
|
| 21 |
from refusal_chain import get_refusal_chain
|
|
|
|
| 26 |
mistral_api_key = os.environ.get("MISTRAL_API_KEY")
|
| 27 |
client = Mistral(api_key=mistral_api_key)
|
| 28 |
|
| 29 |
+
# Setup ChatGoogleGenerativeAI for Gemini
|
| 30 |
+
# Ensure GOOGLE_API_KEY is set in your environment variables.
|
| 31 |
+
gemini_llm = ChatGoogleGenerativeAI(
|
| 32 |
+
model="gemini-1.5-pro",
|
| 33 |
+
temperature=0,
|
| 34 |
+
max_retries=2,
|
| 35 |
+
# You can add additional parameters or safety_settings here if needed
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
# Initialize LiteLLM model for web search (if needed)
|
| 39 |
+
pydantic_agent = ManagedAgent(
|
| 40 |
+
llm=ChatGoogleGenerativeAI(
|
| 41 |
+
model="gemini-1.5-pro",
|
| 42 |
+
temperature=0,
|
| 43 |
+
max_retries=2,
|
| 44 |
+
),
|
| 45 |
+
tools=[DuckDuckGoSearchTool()]
|
| 46 |
+
)
|
| 47 |
|
|
|
|
| 48 |
class QueryInput(BaseModel):
|
| 49 |
query: str = Field(..., min_length=1, description="The input query string")
|
| 50 |
|
|
|
|
| 61 |
categories: Dict[str, bool] = Field(default_factory=dict, description="Detected content categories")
|
| 62 |
original_text: str = Field(..., description="The original input text")
|
| 63 |
|
|
|
|
| 64 |
def install_spacy_model():
|
| 65 |
try:
|
| 66 |
spacy.load("en_core_web_sm")
|
|
|
|
| 73 |
install_spacy_model()
|
| 74 |
nlp = spacy.load("en_core_web_sm")
|
| 75 |
|
| 76 |
+
def sanitize_message(message: Any) -> str:
|
| 77 |
+
"""Sanitize message input to ensure it's a valid string."""
|
| 78 |
+
try:
|
| 79 |
+
if hasattr(message, 'content'):
|
| 80 |
+
return str(message.content).strip()
|
| 81 |
+
if isinstance(message, dict) and 'content' in message:
|
| 82 |
+
return str(message['content']).strip()
|
| 83 |
+
if isinstance(message, list) and len(message) > 0:
|
| 84 |
+
if isinstance(message[0], dict) and 'content' in message[0]:
|
| 85 |
+
return str(message[0]['content']).strip()
|
| 86 |
+
if hasattr(message[0], 'content'):
|
| 87 |
+
return str(message[0].content).strip()
|
| 88 |
+
return str(message).strip()
|
| 89 |
+
except Exception as e:
|
| 90 |
+
raise RuntimeError(f"Error in sanitize function: {str(e)}")
|
| 91 |
+
|
| 92 |
def extract_main_topic(query: str) -> str:
|
| 93 |
try:
|
| 94 |
query_input = QueryInput(query=query)
|
|
|
|
| 191 |
except Exception as e:
|
| 192 |
raise RuntimeError(f"Error building/loading vector store: {str(e)}")
|
| 193 |
|
| 194 |
+
class GeminiLangChainLLM(LLM):
|
| 195 |
+
def _call(self, prompt: str, stop: Optional[list] = None, **kwargs) -> str:
|
| 196 |
+
"""Call the Gemini model using ChatGoogleGenerativeAI and ensure string output."""
|
| 197 |
+
try:
|
| 198 |
+
# Construct message list for the Gemini model
|
| 199 |
+
messages = [("human", prompt)]
|
| 200 |
+
ai_msg = gemini_llm.invoke(messages)
|
| 201 |
+
return ai_msg.content.strip() if ai_msg and ai_msg.content else str(prompt)
|
| 202 |
+
except Exception as e:
|
| 203 |
+
print(f"Error in GeminiLangChainLLM._call: {e}")
|
| 204 |
+
return str(prompt) # Fallback to returning the prompt
|
| 205 |
|
| 206 |
+
@property
|
| 207 |
+
def _llm_type(self) -> str:
|
| 208 |
+
return "custom_gemini"
|
| 209 |
+
|
| 210 |
+
def build_rag_chain(vectorstore: FAISS) -> RetrievalQA:
|
| 211 |
+
"""Build RAG chain with enhanced error handling."""
|
| 212 |
try:
|
| 213 |
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
| 214 |
+
gemini_llm_instance = GeminiLangChainLLM()
|
| 215 |
+
chain = RetrievalQA.from_chain_type(
|
| 216 |
+
llm=gemini_llm_instance,
|
| 217 |
chain_type="stuff",
|
| 218 |
retriever=retriever,
|
| 219 |
return_source_documents=True
|
| 220 |
)
|
| 221 |
+
return chain
|
| 222 |
except Exception as e:
|
| 223 |
raise RuntimeError(f"Error building RAG chain: {str(e)}")
|
| 224 |
+
|
| 225 |
+
def do_web_search(query: str) -> str:
|
|
|
|
|
|
|
| 226 |
try:
|
| 227 |
+
search_tool = DuckDuckGoSearchTool()
|
| 228 |
+
search_agent = ManagedAgent(llm=gemini_llm, tools=[search_tool])
|
| 229 |
+
search_result = search_agent.run(f"Search for information about: {query}")
|
| 230 |
+
return str(search_result).strip()
|
|
|
|
| 231 |
except Exception as e:
|
| 232 |
+
print(f"Web search failed: {e}")
|
| 233 |
+
return ""
|
| 234 |
+
|
| 235 |
+
def merge_responses(csv_answer: str, web_answer: str) -> str:
|
| 236 |
+
try:
|
| 237 |
+
if not csv_answer and not web_answer:
|
| 238 |
+
return "I apologize, but I couldn't find any relevant information."
|
| 239 |
|
| 240 |
+
if not web_answer:
|
| 241 |
+
return csv_answer
|
| 242 |
+
|
| 243 |
+
if not csv_answer:
|
| 244 |
+
return web_answer
|
| 245 |
+
|
| 246 |
+
return f"{csv_answer}\n\nAdditional information from web search:\n{web_answer}"
|
| 247 |
+
except Exception as e:
|
| 248 |
+
print(f"Error merging responses: {e}")
|
| 249 |
+
return csv_answer or web_answer or "I apologize, but I couldn't process the information properly."
|
| 250 |
+
|
| 251 |
def run_pipeline(query: str) -> str:
|
| 252 |
try:
|
| 253 |
+
print(query)
|
| 254 |
+
sanitized_query = sanitize_message(query)
|
| 255 |
+
query_input = QueryInput(query=sanitized_query)
|
| 256 |
+
|
| 257 |
+
topic = extract_main_topic(query_input.query)
|
| 258 |
+
moderation_result = moderate_text(query_input.query)
|
| 259 |
+
|
| 260 |
+
if not moderation_result.is_safe:
|
| 261 |
+
return "Sorry, this query contains harmful or inappropriate content."
|
| 262 |
+
|
| 263 |
+
classification = classify_query(moderation_result.original_text)
|
|
|
|
| 264 |
|
| 265 |
if classification == "OutOfScope":
|
| 266 |
refusal_text = refusal_chain.run({"topic": topic})
|
|
|
|
| 268 |
|
| 269 |
if classification == "Wellness":
|
| 270 |
rag_result = wellness_rag_chain({"query": moderation_result.original_text})
|
| 271 |
+
if isinstance(rag_result, dict) and "result" in rag_result:
|
| 272 |
+
csv_answer = str(rag_result["result"]).strip()
|
| 273 |
+
else:
|
| 274 |
+
csv_answer = str(rag_result).strip()
|
| 275 |
web_answer = "" if csv_answer else do_web_search(moderation_result.original_text)
|
| 276 |
final_merged = merge_responses(csv_answer, web_answer)
|
| 277 |
return tailor_chain.run({"response": final_merged}).strip()
|
| 278 |
|
| 279 |
if classification == "Brand":
|
| 280 |
rag_result = brand_rag_chain({"query": moderation_result.original_text})
|
| 281 |
+
if isinstance(rag_result, dict) and "result" in rag_result:
|
| 282 |
+
csv_answer = str(rag_result["result"]).strip()
|
| 283 |
+
else:
|
| 284 |
+
csv_answer = str(rag_result).strip()
|
| 285 |
final_merged = merge_responses(csv_answer, "")
|
| 286 |
return tailor_chain.run({"response": final_merged}).strip()
|
| 287 |
|
| 288 |
refusal_text = refusal_chain.run({"topic": topic})
|
| 289 |
return tailor_chain.run({"response": refusal_text}).strip()
|
|
|
|
|
|
|
| 290 |
|
| 291 |
+
except ValidationError as e:
|
| 292 |
+
raise ValueError(f"Input validation failed: {str(e)}")
|
| 293 |
+
except Exception as e:
|
| 294 |
+
raise RuntimeError(f"Error in run_pipeline: {str(e)}")
|
| 295 |
+
|
| 296 |
+
def run_with_chain(query: str) -> str:
|
| 297 |
+
try:
|
| 298 |
+
return run_pipeline(query)
|
| 299 |
+
except Exception as e:
|
| 300 |
+
print(f"Error in run_with_chain: {str(e)}")
|
| 301 |
+
return "I apologize, but I encountered an error processing your request. Please try again."
|
| 302 |
|
| 303 |
# Initialize chains and vectorstores
|
| 304 |
classification_chain = get_classification_chain()
|
|
|
|
| 314 |
wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir)
|
| 315 |
brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir)
|
| 316 |
|
| 317 |
+
wellness_rag_chain = build_rag_chain(wellness_vectorstore)
|
| 318 |
+
brand_rag_chain = build_rag_chain(brand_vectorstore)
|
|
|
|
| 319 |
|
| 320 |
print("Pipeline initialized successfully!")
|
|
|
|
|
|
|
|
|
|
|
|