Spaces:
Sleeping
Sleeping
| # pipeline.py | |
| import os | |
| import getpass | |
| import pandas as pd | |
| from typing import Optional | |
| from langchain.docstore.document import Document | |
| from langchain.embeddings import HuggingFaceEmbeddings | |
| from langchain.vectorstores import FAISS | |
| from langchain.chains import RetrievalQA | |
| from smolagents import CodeAgent, DuckDuckGoSearchTool, ManagedAgent, LiteLLMModel | |
| import litellm | |
| # We import the chain builders from our separate files | |
| from classification_chain import get_classification_chain | |
| from refusal_chain import get_refusal_chain | |
| from tailor_chain import get_tailor_chain | |
| from cleaner_chain import get_cleaner_chain, CleanerChain | |
| # We also import the relevant RAG logic here or define it directly | |
| # (We define build_rag_chain in this file for clarity) | |
| ############################################################################### | |
| # 1) Environment: set up keys if missing | |
| ############################################################################### | |
| if not os.environ.get("GEMINI_API_KEY"): | |
| os.environ["GEMINI_API_KEY"] = getpass.getpass("Enter your Gemini API Key: ") | |
| if not os.environ.get("GROQ_API_KEY"): | |
| os.environ["GROQ_API_KEY"] = getpass.getpass("Enter your GROQ API Key: ") | |
| ############################################################################### | |
| # 2) build_or_load_vectorstore | |
| ############################################################################### | |
| def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS: | |
| if os.path.exists(store_dir): | |
| print(f"DEBUG: Found existing FAISS store at '{store_dir}'. Loading...") | |
| embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1") | |
| vectorstore = FAISS.load_local(store_dir, embeddings) | |
| return vectorstore | |
| else: | |
| print(f"DEBUG: Building new store from CSV: {csv_path}") | |
| df = pd.read_csv(csv_path) | |
| df = df.loc[:, ~df.columns.str.contains('^Unnamed')] | |
| df.columns = df.columns.str.strip() | |
| if "Answer" in df.columns: | |
| df.rename(columns={"Answer": "Answers"}, inplace=True) | |
| if "Question" not in df.columns and "Question " in df.columns: | |
| df.rename(columns={"Question ": "Question"}, inplace=True) | |
| if "Question" not in df.columns or "Answers" not in df.columns: | |
| raise ValueError("CSV must have 'Question' and 'Answers' columns.") | |
| docs = [] | |
| for _, row in df.iterrows(): | |
| q = str(row["Question"]) | |
| ans = str(row["Answers"]) | |
| doc = Document(page_content=ans, metadata={"question": q}) | |
| docs.append(doc) | |
| embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1") | |
| vectorstore = FAISS.from_documents(docs, embedding=embeddings) | |
| vectorstore.save_local(store_dir) | |
| return vectorstore | |
| ############################################################################### | |
| # 3) Build RAG chain for Gemini | |
| ############################################################################### | |
| from langchain.llms.base import LLM | |
| def build_rag_chain(llm_model: LiteLLMModel, vectorstore: FAISS) -> RetrievalQA: | |
| class GeminiLangChainLLM(LLM): | |
| def _call(self, prompt: str, stop: Optional[list] = None, **kwargs) -> str: | |
| messages = [{"role": "user", "content": prompt}] | |
| return llm_model(messages, stop_sequences=stop) | |
| def _llm_type(self) -> str: | |
| return "custom_gemini" | |
| retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3}) | |
| gemini_as_llm = GeminiLangChainLLM() | |
| rag_chain = RetrievalQA.from_chain_type( | |
| llm=gemini_as_llm, | |
| chain_type="stuff", | |
| retriever=retriever, | |
| return_source_documents=True | |
| ) | |
| return rag_chain | |
| ############################################################################### | |
| # 4) Initialize all the separate chains | |
| ############################################################################### | |
| # Classification chain | |
| classification_chain = get_classification_chain() | |
| # Refusal chain | |
| refusal_chain = get_refusal_chain() | |
| # Tailor chain | |
| tailor_chain = get_tailor_chain() | |
| # Cleaner chain | |
| cleaner_chain = get_cleaner_chain() | |
| ############################################################################### | |
| # 5) Build our vectorstores + RAG chains | |
| ############################################################################### | |
| wellness_csv = "AIChatbot.csv" | |
| brand_csv = "BrandAI.csv" | |
| wellness_store_dir = "faiss_wellness_store" | |
| brand_store_dir = "faiss_brand_store" | |
| wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir) | |
| brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir) | |
| gemini_llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY")) | |
| wellness_rag_chain = build_rag_chain(gemini_llm, wellness_vectorstore) | |
| brand_rag_chain = build_rag_chain(gemini_llm, brand_vectorstore) | |
| ############################################################################### | |
| # 6) Tools / Agents for web search | |
| ############################################################################### | |
| search_tool = DuckDuckGoSearchTool() | |
| web_agent = CodeAgent(tools=[search_tool], model=gemini_llm) | |
| managed_web_agent = ManagedAgent(agent=web_agent, name="web_search", description="Runs web search for you.") | |
| manager_agent = CodeAgent(tools=[], model=gemini_llm, managed_agents=[managed_web_agent]) | |
| def do_web_search(query: str) -> str: | |
| print("DEBUG: Attempting web search for more info...") | |
| search_query = f"Give me relevant info: {query}" | |
| response = manager_agent.run(search_query) | |
| return response | |
| ############################################################################### | |
| # 7) Orchestrator: run_with_chain | |
| ############################################################################### | |
| def run_with_chain(query: str) -> str: | |
| print("DEBUG: Starting run_with_chain...") | |
| # 1) Classify | |
| class_result = classification_chain.invoke({"query": query}) | |
| classification = class_result.get("text", "").strip() | |
| print("DEBUG: Classification =>", classification) | |
| # If OutOfScope => refusal => tailor => return | |
| if classification == "OutOfScope": | |
| refusal_text = refusal_chain.run({}) | |
| final_refusal = tailor_chain.run({"response": refusal_text}) | |
| return final_refusal.strip() | |
| # If Wellness => wellness RAG => if insufficient => web => unify => tailor | |
| if classification == "Wellness": | |
| rag_result = wellness_rag_chain({"query": query}) | |
| csv_answer = rag_result["result"].strip() | |
| if not csv_answer: | |
| web_answer = do_web_search(query) | |
| else: | |
| lower_ans = csv_answer.lower() | |
| if any(phrase in lower_ans for phrase in ["i do not know", "not sure", "no context", "cannot answer"]): | |
| web_answer = do_web_search(query) | |
| else: | |
| web_answer = "" | |
| final_merged = cleaner_chain.merge(kb=csv_answer, web=web_answer) | |
| final_answer = tailor_chain.run({"response": final_merged}) | |
| return final_answer.strip() | |
| # If Brand => brand RAG => tailor => return | |
| if classification == "Brand": | |
| rag_result = brand_rag_chain({"query": query}) | |
| csv_answer = rag_result["result"].strip() | |
| final_merged = cleaner_chain.merge(kb=csv_answer, web="") | |
| final_answer = tailor_chain.run({"response": final_merged}) | |
| return final_answer.strip() | |
| # fallback | |
| refusal_text = refusal_chain.run({}) | |
| final_refusal = tailor_chain.run({"response": refusal_text}) | |
| return final_refusal.strip() | |