# chain_problems.py import json import logging from typing import Dict from langchain import PromptTemplate, LLMChain from models import chat_model logger = logging.getLogger(__name__) problem_prompt_template = PromptTemplate( input_variables=["responses", "internal_report"], template=( "You are a wellness analyst. You have the following user responses to health-related questions:\n" "{responses}\n\n" "You also have an internal analysis report:\n" "{internal_report}\n\n" "From these inputs, determine a 'problem severity percentage' for the user in the following areas: " "sleep, exercise, stress, and diet. " "Return your answer in JSON format with keys: sleep_problem, exercise_problem, stress_problem, diet_problem.\n" "Ensure severity percentages are numbers from 0 to 100.\n\n" "JSON Output:" ) ) problem_chain = LLMChain(llm=chat_model, prompt=problem_prompt_template) def analyze_problems_with_chain(responses: Dict[str, str], internal_report: str) -> Dict[str, float]: responses_str = "\n".join(f"{q}: {a}" for q, a in responses.items()) raw_text = problem_chain.run(responses=responses_str, internal_report=internal_report) try: start_idx = raw_text.find('{') end_idx = raw_text.rfind('}') + 1 json_str = raw_text[start_idx:end_idx] problems = json.loads(json_str) for key in ["sleep_problem", "exercise_problem", "stress_problem", "diet_problem"]: problems.setdefault(key, 0.0) return {k: float(v) for k, v in problems.items()} except Exception as e: logger.error(f"Error parsing problem percentages from LLM: {e}") return { "sleep_problem": 0.0, "exercise_problem": 0.0, "stress_problem": 0.0, "diet_problem": 0.0 }