Spaces:
Sleeping
Sleeping
| # chain_summary.py | |
| import json | |
| from typing import Dict | |
| from langchain import PromptTemplate, LLMChain | |
| from models import chat_model | |
| final_prompt_template = PromptTemplate( | |
| input_variables=["report", "problems", "recommendation"], | |
| template=( | |
| "Based on the following information:\n" | |
| "Report:\n{report}\n\n" | |
| "Problem Severity Percentages:\n{problems}\n\n" | |
| "Recommended Packages:\n{recommendation}\n\n" | |
| "Generate a short summary suitable for video narration that synthesizes this information." | |
| ) | |
| ) | |
| final_chain = LLMChain(llm=chat_model, prompt=final_prompt_template) | |
| def generate_final_summary(report: str, problems: Dict[str, float], recommendation: str) -> str: | |
| summary = final_chain.run( | |
| report=report, | |
| problems=json.dumps(problems), | |
| recommendation=recommendation | |
| ) | |
| return summary.strip() | |
| shorten_prompt_template = PromptTemplate( | |
| input_variables=["final_summary"], | |
| template=( | |
| "Shorten the following summary to make it concise and engaging for video narration. " | |
| "Ensure all key points remain intact:\n\n" | |
| "{final_summary}\n\n" | |
| "Shortened Summary:" | |
| ) | |
| ) | |
| shorten_chain = LLMChain(llm=chat_model, prompt=shorten_prompt_template) | |
| def shorten_summary(final_summary: str) -> str: | |
| shortened = shorten_chain.run(final_summary=final_summary) | |
| return shortened.strip() | |