Spaces:
Sleeping
Sleeping
File size: 2,582 Bytes
2ea2a1a 1c1c01f 2ea2a1a 1c1c01f 2ea2a1a 1c1c01f 2ea2a1a 1c1c01f 2ea2a1a 1c1c01f 2ea2a1a 1c1c01f 2ea2a1a 1c1c01f 2ea2a1a 1c1c01f 2ea2a1a 1c1c01f 2ea2a1a 1c1c01f 2ea2a1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
# app.py
import gradio as gr
from pipeline import process_answers_pipeline # Import the centralized pipeline function
from questions import questions # Import questions list
def process_answers(
sleep: str,
exercise: str,
stress: str,
goals: str,
diet: str,
eating: str,
relaxation: str,
health_issues: str,
manage_stress: str,
routine: str
):
# Map user inputs to corresponding questions
responses = {
questions[0]: sleep,
questions[1]: exercise,
questions[2]: stress,
questions[3]: goals,
questions[4]: diet,
questions[5]: eating,
questions[6]: relaxation,
questions[7]: health_issues,
questions[8]: manage_stress,
questions[9]: routine
}
# Use the centralized pipeline to process all responses
results = process_answers_pipeline(responses)
# Format outputs using results from the pipeline
wellness_report = f"**Wellness Report**\n------------------\n{results['report'].strip()}"
identified_problems = (
"**Identified Problems**\n"
"-----------------------\n"
f"Sleep Problem: {results['problems'].get('sleep_problem', 'N/A')}%\n"
f"Exercise Problem: {results['problems'].get('exercise_problem', 'N/A')}%\n"
f"Stress Problem: {results['problems'].get('stress_problem', 'N/A')}%\n"
f"Diet Problem: {results['problems'].get('diet_problem', 'N/A')}%"
)
recommendations = (
"**Recommendations**\n"
"--------------------\n"
f"{results['recommendation'].strip()}"
)
summary_shown = (
"**Summary (SHOWN TO USER)**\n"
"-----------------\n"
f"{results['final_summary'].strip()}"
)
final_summary_video = (
"**Final Summary (FOR VIDEO CREATION)**\n"
"-----------------\n"
f"{results['shortened_summary'].strip()}"
)
return wellness_report, identified_problems, recommendations, summary_shown, final_summary_video
iface = gr.Interface(
fn=process_answers,
inputs=[gr.Textbox(label=q) for q in questions],
outputs=[
gr.Markdown(label="Wellness Report"),
gr.Markdown(label="Identified Problems"),
gr.Markdown(label="Recommendations"),
gr.Markdown(label="Summary (SHOWN TO USER)"),
gr.Markdown(label="Final Summary (FOR VIDEO CREATION)")
],
title="Wellness Report Generator",
description="Answer the questions to generate a wellness report, problem analysis, recommendations, and a final summary."
)
iface.launch()
|