File size: 17,248 Bytes
318db6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
from llama_index.core.objects import (
    SQLTableNodeMapping,
    ObjectIndex,
    SQLTableSchema,
)
from llama_index.core import SQLDatabase, VectorStoreIndex
from llama_index.core.llms import ChatResponse
from llama_index.core.storage.chat_store import SimpleChatStore
from serpapi import GoogleSearch
from pydantic import BaseModel, Field
from typing import Dict, Any, List, Tuple
from bs4 import BeautifulSoup
import os, requests, re, json
import pymysql
import hashlib
from dotenv import load_dotenv

load_dotenv()
SERPAPI_KEY = os.getenv("SERPAPI_KEY")
CHAT_STORE_PATH = os.getenv("CHAT_STORE_PATH")

TABLE_SUMMARY = {
    "t_sur_media_sync_es": "This table is about Porn video information:\n\nt_sur_media_sync_es: Columns:id (integer), web_url (string), duration (integer), pattern_per (integer), like_count (integer), dislike_count (integer), view_count (integer), cover_picture (string), title (string), upload_date (datetime), uploader (string), create_time (datetime), update_time (datetime), categories (list of strings), abbreviate_video_url (string), abbreviate_mp4_video_url (string), resource_type (integer), like_count_show (string), stat_version (string), tags (list of strings), model_name (string), publisher_type (string), period (string), sexual_preference (string), country (string), type (string), rank_number (integer), rank_rate (string), has_pattern (boolean), trace (string), manifest_url (string), is_delete (boolean), web_url_md5 (string), view_key (string)",
    "t_sur_models_info": "This table is about Stripchat models' information:\n\nt_sur_models_info: Columns:id (INTEGER), username (VARCHAR(100), image (VARCHAR(500), num_users (INTEGER), pf (VARCHAR(50), pf_model_unite (VARCHAR(50), use_plugin (INTEGER), create_time (DATETIME), update_time (DATETIME), update_time (DATETIME), gender (VARCHAR(50), broadcast_type (VARCHAR(50), common_gender (VARCHAR(50), avatar (VARCHAR(512), age (INTEGER) ",
}


class TableInfo(BaseModel):
    """Information regarding a structured table."""

    table_name: str = Field(
        ..., description="table name (must be underscores and NO spaces)"
    )
    table_summary: str = Field(
        ..., description="short, concise summary/caption of the table"
    )


class SQLResult(BaseModel):
    cols: List[str] = Field(..., description="The columns within the sql result")
    results: List[Dict[str, Any]] = Field(
        ..., description="The results of the sql query"
    )


class ProcessStatus(BaseModel):
    type: str = Field(..., description="The type of process")
    status: str = Field(..., description="The status of the process")  # start/end

    def to_json(self):
        dict_obj = {"processing": {"type": self.type, "status": self.status}}
        json_str = json.dumps(dict_obj)
        return json_str

    def update(self, status: str):
        self.status = status

class MySQLChatStore:
    def __init__(self, host, port, user, password, database):
        self.host = host
        self.port = port
        self.user = user
        self.password = password
        self.database = database
        self.config = {
            "host": self.host,
            "port": self.port,
            "user": self.user,
            "password": self.password,
            "database": self.database,
        }
        self.connection = pymysql.connect(**self.config)

    def get_chat_history(self, user_id):
        table_index = myhash(user_id) % 32
        query = f"SELECT user_role, content FROM t_sur_ai_chat_history_{table_index} WHERE user_id = '{user_id}' ORDER BY create_time DESC LIMIT 4;"
        chat_history = []
        with self.connection.cursor() as cursor:
            cursor.execute(query)
            result = cursor.fetchall()
            for row in reversed(result):
                chat_history.append(f"'{row[0]}': {row[1]}")
            return "\n".join(chat_history)
    
    def add_message(self, user_id, role, content):
        table_index = myhash(user_id) % 32
        query = f"INSERT INTO t_sur_ai_chat_history_{table_index} (user_id, user_role, content, create_time) VALUES (%s, %s, %s, NOW());"
        with self.connection.cursor() as cursor:
            cursor.execute(query, (user_id, role, content))
            self.connection.commit()
    
    def del_message(self, user_id, content):
        table_index = myhash(user_id) % 32
        query = f"DELETE FROM t_sur_ai_chat_history_{table_index} WHERE user_id = %s AND content = %s;"
        with self.connection.cursor() as cursor:
            cursor.execute(query, (user_id, content))
            self.connection.commit()

class ToyStatusStore:
    def __init__(self, host, port, user, password, database):
        self.host = host
        self.port = port
        self.user = user
        self.password = password
        self.database = database
        self.config = {
            "host": self.host,
            "port": self.port,
            "user": self.user,
            "password": self.password,
            "database": self.database,
        }
        self.connection = pymysql.connect(**self.config)
        
    def get_latest(self, user_id):
        table_index = myhash(user_id) % 8
        query = f"SELECT pattern, toy_name FROM t_sur_ai_toy_status_{table_index} WHERE user_id = '{user_id}' ORDER BY create_time DESC LIMIT 1;"
        with self.connection.cursor() as cursor:
            cursor.execute(query)
            pattern, toy_name = cursor.fetchall()[0] if cursor.rowcount > 0 else ("[]", "")
            pattern = json.loads(pattern)
            result = {
                "pattern": pattern,
                "toy_name": toy_name
            }
            return result
        
    def update(self, user_id, pattern, toy_name):
        table_index = myhash(user_id) % 8
        query = f"INSERT INTO t_sur_ai_toy_status_{table_index} (user_id, pattern, toy_name, create_time) VALUES (%s, %s, %s, NOW());"
        with self.connection.cursor() as cursor:
            cursor.execute(query, (user_id, pattern, toy_name))
            self.connection.commit()

class ExtraStatus(BaseModel):
    adultMode: int = Field(..., description="The adult mode status")
    intentionResult: list | None
    sensitiveResult: list | None
    questionIsSex: str | None

    def to_json(self):
        adultMode = "1" if self.adultMode else "0"
        dict_obj = {
            "extraResults": {
                "adultMode": adultMode,
                "intentionResult": self.intentionResult,
                "sensitiveResult": self.sensitiveResult,
                "questionIsSex": self.questionIsSex,
            }
        }
        json_str = json.dumps(dict_obj)
        return json_str


def myhash(string):
    hash_obj = hashlib.sha256()
    hash_obj.update(string.encode('utf-8'))
    hash_int = int.from_bytes(hash_obj.digest(), byteorder='big')
    return hash_int

def create_table_retriever(sql_db: SQLDatabase):
    """
    Create a table retriever that can retrieve table information from the SQL database.
    """
    table_infos = []
    table_names = sql_db.get_usable_table_names()
    for table in table_names:
        table_info = TableInfo(table_name=table, table_summary=TABLE_SUMMARY[table])
        table_infos.append(table_info)

    node_mapping = SQLTableNodeMapping(sql_db)
    table_schema_objs = [
        SQLTableSchema(table_name=t.table_name, context_str=t.table_summary)
        for t in table_infos
    ]
    obj_index = ObjectIndex.from_objects(
        table_schema_objs,
        object_mapping=node_mapping,
        index_cls=VectorStoreIndex,
    )
    retriever = obj_index.as_retriever(similarity_top_k=1)
    return retriever


def get_table_retriever(sql_db: SQLDatabase):
    table_infos = []
    table_names = sql_db.get_usable_table_names()
    for table in table_names:
        table_info = TableInfo(table_name=table, table_summary=TABLE_SUMMARY[table])
        table_infos.append(table_info)

    node_mapping = SQLTableNodeMapping(sql_db)
    obj_index = ObjectIndex.from_persist_dir(
        persist_dir="/home/purui/projects/chatbot/kb/sql/table_obj_index",
        object_node_mapping=node_mapping,
    )
    retriever = obj_index.as_retriever(similarity_top_k=1)
    return retriever


def get_table_context_str(
    table_schema_objs: List[SQLTableSchema], sql_database: SQLDatabase
):
    """Get table context string."""
    context_strs = []
    for table_schema_obj in table_schema_objs:
        table_info = sql_database.get_single_table_info(table_schema_obj.table_name)
        if table_schema_obj.context_str:
            table_opt_context = " The table description is: "
            table_opt_context += table_schema_obj.context_str
            table_info += table_opt_context

        context_strs.append(table_info)
    return "\n\n".join(context_strs)


def parse_response_to_sql(response: ChatResponse) -> str:
    """Parse response to SQL."""
    response = response.message.content
    sql_query_start = response.find("SQLQuery:")
    if sql_query_start != -1:
        response = response[sql_query_start:]
        # TODO: move to removeprefix after Python 3.9+
        if response.startswith("SQLQuery:"):
            response = response[len("SQLQuery:") :]
    sql_result_start = response.find("SQLResult:")
    if sql_result_start != -1:
        response = response[:sql_result_start]
    return response.strip().strip("```").strip()


def parse_web_search_content(content: List[Dict[str, Any]]):
    """Parse web search content."""
    web_search_content = []
    for idx, res in enumerate(content):
        keys = res.keys()
        if "title" and "link" in keys:
            title = res["title"]
            link = res["link"]
            content = f"-[{title}]({link})"
            web_search_content.append(content)
        else:
            web_search_content.append("")
    web_search_content = "\n".join(web_search_content)
    return web_search_content


def parse_video_content(content: List[Dict[str, Any]]):
    """Parse web search content."""
    video_content = ["Videos:"]
    for idx, res in enumerate(content):
        try:
            title = res["title"]
            link = res["link"]
            content = f"- [{title}]({link})"
            video_content.append(content)
        except Exception as e:
            video_content.append("")
    video_content = "\n".join(video_content)
    return video_content


def parse_image_content(content: List[Dict[str, Any]]):
    """Parse web search content."""
    image_content = ["Images:"]
    for idx, res in enumerate(content):
        try:
            title = res["title"]
            original = res["original"]
            content = f"- [{title}]({original})"
            image_content.append(content)
        except Exception as e:
            image_content.append("")
    image_content = "\n".join(image_content)
    return image_content


def pares_sql_result(
    sql_result: List[Tuple[str, ...]], sql_query: str, col_keys: List[str]
):
    result_list = []
    seen = set()
    for row in sql_result:
        row_dict = {}
        for idx, col in enumerate(col_keys):
            row_dict[str(col)] = str(row[idx])
        if tuple(sorted(row_dict.items())) in seen:
            continue
        result_list.append(row_dict)

    str_result = []
    col_row = [str(col) for col in col_keys]
    str_result.append("\t".join(col_row))
    for row in result_list:
        row_str = []
        for k, v in row.items():
            row_str.append(v)
        str_result.append("\t".join(row_str))
    str_result = "\n".join(str_result)
    result = SQLResult(cols=col_keys, results=result_list)
    return result, str_result


def load_chat_store(chat_store_name: str):
    """Get user's chat history by sessionId"""
    path = f"{CHAT_STORE_PATH}/{chat_store_name}.json"
    if os.path.exists(path):
        chat_store = SimpleChatStore.from_persist_path(path)
    else:
        chat_store = SimpleChatStore()
        chat_store.persist(persist_path=path)
    return chat_store


def video_search(q: str, mode: str):

    params = {
        "engine": "google_videos",
        "q": q,
        "google_domain": "google.com",
        "gl": "us",
        "hl": "en",
        "safe": mode,
        "num": 5,
        "api_key": SERPAPI_KEY,
    }
    result = GoogleSearch(params).get_dict()
    try:
        if result["video_results"]:
            video_result = result["video_results"]
            return video_result
    except:
        return False


def image_search(q: str, mode: str):

    params = {
        "engine": "google_images",
        "q": q,
        "google_domain": "google.com",
        "gl": "us",
        "hl": "en",
        "safe": mode,
        "num": 20,
        "api_key": SERPAPI_KEY,
    }

    result = GoogleSearch(params).get_dict()
    try:
        if result["images_results"]:
            image_result = result["images_results"][:20]
            return image_result
    except:
        return False


def general_search(q: str, mode: str):

    params = {
        "engine": "google_light",
        "q": q,
        "google_domain": "google.com",
        "gl": "us",
        "hl": "en",
        "safe": mode,
        "num": 5,
        "api_key": SERPAPI_KEY,
    }

    result = GoogleSearch(params).get_dict()
    try:
        if result["organic_results"]:
            general_result = result["organic_results"]
            return general_result
    except:
        return False


def web_reader(url: str):
    try:
        print(f"parsing {url}...")
        headers = {
            "User-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"
        }
        response = requests.get(url=url, headers=headers, timeout=2.0)
        response.raise_for_status()
        html = response.content
        text = BeautifulSoup(html, "lxml").get_text()
        cleaned_text = re.sub(r"\n+", "\n", text)
        if len(cleaned_text) != 0:
            # llm = Ollama(model="artifish/llama3.2-uncensored", context_window=5000)
            # summary = llm.chat(
            #     SUMMARIZE_WEBPAGE_PROMPT.format_messages(webpage_content=cleaned_text)
            # ).message.content
            # result = f"""{summary}"""
            return cleaned_text
        else:
            return " "
    except Exception as e:
        print(e)
        return False


if __name__ == "__main__":
    # url = "https://tampax.com/en-us/period-health/how-to-feel-better-on-your-period/"
    # headers = {
    #         "User-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"
    #     }
    # response = requests.get(url=url, headers=headers, timeout=2.0)
    # response.raise_for_status()
    # html = response.content
    # text = BeautifulSoup(html, "lxml").get_text()
    # cleaned_text = re.sub(r'\n+', '\n', text)
    # print(cleaned_text)
    # print(web_reader(url))
    result = general_search("Chanell Heart", "off")
    print(result)

    {
        "position": 1,
        "title": "Victoria SnakeySmut | Fansly",
        "link": "https://fansly.com/SnakeySmut",
        "displayed_link": "fansly.com/SnakeySmut",
        "snippet": "SnakeySmut conjures audio roleplays. Like the little noises I make with my mouth? Come see everything here! 18+ ONLY.",
    }
    {
        "position": 1,
        "title": "Victoria SnakeySmut | Fansly",
        "link": "https://fansly.com/SnakeySmut",
        "displayed_link": "fansly.com/SnakeySmut",
        "snippet": "SnakeySmut conjures audio roleplays. Like the little noises I make with my mouth? Come see everything here! 18+ ONLY.",
    }
    {
        "position": 1,
        "thumbnail": "https://cdn.lovense-api.com/UploadFiles/surfease/x3/chanell-heart.png",
        "related_content_id": "WkNzSFNndkhqVlBrOU1cIixcIk16bG1veURtUndJemZN",
        "serpapi_related_content_link": "https://cdn.lovense-api.com/UploadFiles/surfease/x3/chanell-heart.png",
        "source": "http://www.vibemate.com",
        "source_logo": "",
        "title": "Chanell Heart",
        "link": "https://cdn.lovense-api.com/UploadFiles/surfease/x3/chanell-heart.png",
        "original": "https://cdn.lovense-api.com/UploadFiles/surfease/x3/chanell-heart.png",
        "original_width": 2160,
        "original_height": 2700,
        "is_product": False,
    }
    {
        "position": 1,
        "thumbnail": "https://cdn.lovense-api.com/UploadFiles/surfease/x3/SnakeySmut.png",
        "related_content_id": "WkNzSFNndkhqVlBrOU1cIixcIk16bG1veURtUndJemZN",
        "serpapi_related_content_link": "https://cdn.lovense-api.com/UploadFiles/surfease/x3/SnakeySmut.png",
        "source": "http://www.vibemate.com",
        "source_logo": "",
        "title": "Victoria SnakeySmut",
        "link": "https://cdn.lovense-api.com/UploadFiles/surfease/x3/SnakeySmut.png",
        "original": "https://cdn.lovense-api.com/UploadFiles/surfease/x3/SnakeySmut.png",
        "original_width": 2160,
        "original_height": 2700,
        "is_product": False,
    }


def prRed(skk): print("\033[91m{}\033[00m" .format(skk))

def prGreen(skk): print("\033[92m{}\033[00m" .format(skk))

def prYellow(skk): print("\033[93m{}\033[00m" .format(skk))