File size: 17,248 Bytes
318db6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
from llama_index.core.objects import (
SQLTableNodeMapping,
ObjectIndex,
SQLTableSchema,
)
from llama_index.core import SQLDatabase, VectorStoreIndex
from llama_index.core.llms import ChatResponse
from llama_index.core.storage.chat_store import SimpleChatStore
from serpapi import GoogleSearch
from pydantic import BaseModel, Field
from typing import Dict, Any, List, Tuple
from bs4 import BeautifulSoup
import os, requests, re, json
import pymysql
import hashlib
from dotenv import load_dotenv
load_dotenv()
SERPAPI_KEY = os.getenv("SERPAPI_KEY")
CHAT_STORE_PATH = os.getenv("CHAT_STORE_PATH")
TABLE_SUMMARY = {
"t_sur_media_sync_es": "This table is about Porn video information:\n\nt_sur_media_sync_es: Columns:id (integer), web_url (string), duration (integer), pattern_per (integer), like_count (integer), dislike_count (integer), view_count (integer), cover_picture (string), title (string), upload_date (datetime), uploader (string), create_time (datetime), update_time (datetime), categories (list of strings), abbreviate_video_url (string), abbreviate_mp4_video_url (string), resource_type (integer), like_count_show (string), stat_version (string), tags (list of strings), model_name (string), publisher_type (string), period (string), sexual_preference (string), country (string), type (string), rank_number (integer), rank_rate (string), has_pattern (boolean), trace (string), manifest_url (string), is_delete (boolean), web_url_md5 (string), view_key (string)",
"t_sur_models_info": "This table is about Stripchat models' information:\n\nt_sur_models_info: Columns:id (INTEGER), username (VARCHAR(100), image (VARCHAR(500), num_users (INTEGER), pf (VARCHAR(50), pf_model_unite (VARCHAR(50), use_plugin (INTEGER), create_time (DATETIME), update_time (DATETIME), update_time (DATETIME), gender (VARCHAR(50), broadcast_type (VARCHAR(50), common_gender (VARCHAR(50), avatar (VARCHAR(512), age (INTEGER) ",
}
class TableInfo(BaseModel):
"""Information regarding a structured table."""
table_name: str = Field(
..., description="table name (must be underscores and NO spaces)"
)
table_summary: str = Field(
..., description="short, concise summary/caption of the table"
)
class SQLResult(BaseModel):
cols: List[str] = Field(..., description="The columns within the sql result")
results: List[Dict[str, Any]] = Field(
..., description="The results of the sql query"
)
class ProcessStatus(BaseModel):
type: str = Field(..., description="The type of process")
status: str = Field(..., description="The status of the process") # start/end
def to_json(self):
dict_obj = {"processing": {"type": self.type, "status": self.status}}
json_str = json.dumps(dict_obj)
return json_str
def update(self, status: str):
self.status = status
class MySQLChatStore:
def __init__(self, host, port, user, password, database):
self.host = host
self.port = port
self.user = user
self.password = password
self.database = database
self.config = {
"host": self.host,
"port": self.port,
"user": self.user,
"password": self.password,
"database": self.database,
}
self.connection = pymysql.connect(**self.config)
def get_chat_history(self, user_id):
table_index = myhash(user_id) % 32
query = f"SELECT user_role, content FROM t_sur_ai_chat_history_{table_index} WHERE user_id = '{user_id}' ORDER BY create_time DESC LIMIT 4;"
chat_history = []
with self.connection.cursor() as cursor:
cursor.execute(query)
result = cursor.fetchall()
for row in reversed(result):
chat_history.append(f"'{row[0]}': {row[1]}")
return "\n".join(chat_history)
def add_message(self, user_id, role, content):
table_index = myhash(user_id) % 32
query = f"INSERT INTO t_sur_ai_chat_history_{table_index} (user_id, user_role, content, create_time) VALUES (%s, %s, %s, NOW());"
with self.connection.cursor() as cursor:
cursor.execute(query, (user_id, role, content))
self.connection.commit()
def del_message(self, user_id, content):
table_index = myhash(user_id) % 32
query = f"DELETE FROM t_sur_ai_chat_history_{table_index} WHERE user_id = %s AND content = %s;"
with self.connection.cursor() as cursor:
cursor.execute(query, (user_id, content))
self.connection.commit()
class ToyStatusStore:
def __init__(self, host, port, user, password, database):
self.host = host
self.port = port
self.user = user
self.password = password
self.database = database
self.config = {
"host": self.host,
"port": self.port,
"user": self.user,
"password": self.password,
"database": self.database,
}
self.connection = pymysql.connect(**self.config)
def get_latest(self, user_id):
table_index = myhash(user_id) % 8
query = f"SELECT pattern, toy_name FROM t_sur_ai_toy_status_{table_index} WHERE user_id = '{user_id}' ORDER BY create_time DESC LIMIT 1;"
with self.connection.cursor() as cursor:
cursor.execute(query)
pattern, toy_name = cursor.fetchall()[0] if cursor.rowcount > 0 else ("[]", "")
pattern = json.loads(pattern)
result = {
"pattern": pattern,
"toy_name": toy_name
}
return result
def update(self, user_id, pattern, toy_name):
table_index = myhash(user_id) % 8
query = f"INSERT INTO t_sur_ai_toy_status_{table_index} (user_id, pattern, toy_name, create_time) VALUES (%s, %s, %s, NOW());"
with self.connection.cursor() as cursor:
cursor.execute(query, (user_id, pattern, toy_name))
self.connection.commit()
class ExtraStatus(BaseModel):
adultMode: int = Field(..., description="The adult mode status")
intentionResult: list | None
sensitiveResult: list | None
questionIsSex: str | None
def to_json(self):
adultMode = "1" if self.adultMode else "0"
dict_obj = {
"extraResults": {
"adultMode": adultMode,
"intentionResult": self.intentionResult,
"sensitiveResult": self.sensitiveResult,
"questionIsSex": self.questionIsSex,
}
}
json_str = json.dumps(dict_obj)
return json_str
def myhash(string):
hash_obj = hashlib.sha256()
hash_obj.update(string.encode('utf-8'))
hash_int = int.from_bytes(hash_obj.digest(), byteorder='big')
return hash_int
def create_table_retriever(sql_db: SQLDatabase):
"""
Create a table retriever that can retrieve table information from the SQL database.
"""
table_infos = []
table_names = sql_db.get_usable_table_names()
for table in table_names:
table_info = TableInfo(table_name=table, table_summary=TABLE_SUMMARY[table])
table_infos.append(table_info)
node_mapping = SQLTableNodeMapping(sql_db)
table_schema_objs = [
SQLTableSchema(table_name=t.table_name, context_str=t.table_summary)
for t in table_infos
]
obj_index = ObjectIndex.from_objects(
table_schema_objs,
object_mapping=node_mapping,
index_cls=VectorStoreIndex,
)
retriever = obj_index.as_retriever(similarity_top_k=1)
return retriever
def get_table_retriever(sql_db: SQLDatabase):
table_infos = []
table_names = sql_db.get_usable_table_names()
for table in table_names:
table_info = TableInfo(table_name=table, table_summary=TABLE_SUMMARY[table])
table_infos.append(table_info)
node_mapping = SQLTableNodeMapping(sql_db)
obj_index = ObjectIndex.from_persist_dir(
persist_dir="/home/purui/projects/chatbot/kb/sql/table_obj_index",
object_node_mapping=node_mapping,
)
retriever = obj_index.as_retriever(similarity_top_k=1)
return retriever
def get_table_context_str(
table_schema_objs: List[SQLTableSchema], sql_database: SQLDatabase
):
"""Get table context string."""
context_strs = []
for table_schema_obj in table_schema_objs:
table_info = sql_database.get_single_table_info(table_schema_obj.table_name)
if table_schema_obj.context_str:
table_opt_context = " The table description is: "
table_opt_context += table_schema_obj.context_str
table_info += table_opt_context
context_strs.append(table_info)
return "\n\n".join(context_strs)
def parse_response_to_sql(response: ChatResponse) -> str:
"""Parse response to SQL."""
response = response.message.content
sql_query_start = response.find("SQLQuery:")
if sql_query_start != -1:
response = response[sql_query_start:]
# TODO: move to removeprefix after Python 3.9+
if response.startswith("SQLQuery:"):
response = response[len("SQLQuery:") :]
sql_result_start = response.find("SQLResult:")
if sql_result_start != -1:
response = response[:sql_result_start]
return response.strip().strip("```").strip()
def parse_web_search_content(content: List[Dict[str, Any]]):
"""Parse web search content."""
web_search_content = []
for idx, res in enumerate(content):
keys = res.keys()
if "title" and "link" in keys:
title = res["title"]
link = res["link"]
content = f"-[{title}]({link})"
web_search_content.append(content)
else:
web_search_content.append("")
web_search_content = "\n".join(web_search_content)
return web_search_content
def parse_video_content(content: List[Dict[str, Any]]):
"""Parse web search content."""
video_content = ["Videos:"]
for idx, res in enumerate(content):
try:
title = res["title"]
link = res["link"]
content = f"- [{title}]({link})"
video_content.append(content)
except Exception as e:
video_content.append("")
video_content = "\n".join(video_content)
return video_content
def parse_image_content(content: List[Dict[str, Any]]):
"""Parse web search content."""
image_content = ["Images:"]
for idx, res in enumerate(content):
try:
title = res["title"]
original = res["original"]
content = f"- [{title}]({original})"
image_content.append(content)
except Exception as e:
image_content.append("")
image_content = "\n".join(image_content)
return image_content
def pares_sql_result(
sql_result: List[Tuple[str, ...]], sql_query: str, col_keys: List[str]
):
result_list = []
seen = set()
for row in sql_result:
row_dict = {}
for idx, col in enumerate(col_keys):
row_dict[str(col)] = str(row[idx])
if tuple(sorted(row_dict.items())) in seen:
continue
result_list.append(row_dict)
str_result = []
col_row = [str(col) for col in col_keys]
str_result.append("\t".join(col_row))
for row in result_list:
row_str = []
for k, v in row.items():
row_str.append(v)
str_result.append("\t".join(row_str))
str_result = "\n".join(str_result)
result = SQLResult(cols=col_keys, results=result_list)
return result, str_result
def load_chat_store(chat_store_name: str):
"""Get user's chat history by sessionId"""
path = f"{CHAT_STORE_PATH}/{chat_store_name}.json"
if os.path.exists(path):
chat_store = SimpleChatStore.from_persist_path(path)
else:
chat_store = SimpleChatStore()
chat_store.persist(persist_path=path)
return chat_store
def video_search(q: str, mode: str):
params = {
"engine": "google_videos",
"q": q,
"google_domain": "google.com",
"gl": "us",
"hl": "en",
"safe": mode,
"num": 5,
"api_key": SERPAPI_KEY,
}
result = GoogleSearch(params).get_dict()
try:
if result["video_results"]:
video_result = result["video_results"]
return video_result
except:
return False
def image_search(q: str, mode: str):
params = {
"engine": "google_images",
"q": q,
"google_domain": "google.com",
"gl": "us",
"hl": "en",
"safe": mode,
"num": 20,
"api_key": SERPAPI_KEY,
}
result = GoogleSearch(params).get_dict()
try:
if result["images_results"]:
image_result = result["images_results"][:20]
return image_result
except:
return False
def general_search(q: str, mode: str):
params = {
"engine": "google_light",
"q": q,
"google_domain": "google.com",
"gl": "us",
"hl": "en",
"safe": mode,
"num": 5,
"api_key": SERPAPI_KEY,
}
result = GoogleSearch(params).get_dict()
try:
if result["organic_results"]:
general_result = result["organic_results"]
return general_result
except:
return False
def web_reader(url: str):
try:
print(f"parsing {url}...")
headers = {
"User-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"
}
response = requests.get(url=url, headers=headers, timeout=2.0)
response.raise_for_status()
html = response.content
text = BeautifulSoup(html, "lxml").get_text()
cleaned_text = re.sub(r"\n+", "\n", text)
if len(cleaned_text) != 0:
# llm = Ollama(model="artifish/llama3.2-uncensored", context_window=5000)
# summary = llm.chat(
# SUMMARIZE_WEBPAGE_PROMPT.format_messages(webpage_content=cleaned_text)
# ).message.content
# result = f"""{summary}"""
return cleaned_text
else:
return " "
except Exception as e:
print(e)
return False
if __name__ == "__main__":
# url = "https://tampax.com/en-us/period-health/how-to-feel-better-on-your-period/"
# headers = {
# "User-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"
# }
# response = requests.get(url=url, headers=headers, timeout=2.0)
# response.raise_for_status()
# html = response.content
# text = BeautifulSoup(html, "lxml").get_text()
# cleaned_text = re.sub(r'\n+', '\n', text)
# print(cleaned_text)
# print(web_reader(url))
result = general_search("Chanell Heart", "off")
print(result)
{
"position": 1,
"title": "Victoria SnakeySmut | Fansly",
"link": "https://fansly.com/SnakeySmut",
"displayed_link": "fansly.com/SnakeySmut",
"snippet": "SnakeySmut conjures audio roleplays. Like the little noises I make with my mouth? Come see everything here! 18+ ONLY.",
}
{
"position": 1,
"title": "Victoria SnakeySmut | Fansly",
"link": "https://fansly.com/SnakeySmut",
"displayed_link": "fansly.com/SnakeySmut",
"snippet": "SnakeySmut conjures audio roleplays. Like the little noises I make with my mouth? Come see everything here! 18+ ONLY.",
}
{
"position": 1,
"thumbnail": "https://cdn.lovense-api.com/UploadFiles/surfease/x3/chanell-heart.png",
"related_content_id": "WkNzSFNndkhqVlBrOU1cIixcIk16bG1veURtUndJemZN",
"serpapi_related_content_link": "https://cdn.lovense-api.com/UploadFiles/surfease/x3/chanell-heart.png",
"source": "http://www.vibemate.com",
"source_logo": "",
"title": "Chanell Heart",
"link": "https://cdn.lovense-api.com/UploadFiles/surfease/x3/chanell-heart.png",
"original": "https://cdn.lovense-api.com/UploadFiles/surfease/x3/chanell-heart.png",
"original_width": 2160,
"original_height": 2700,
"is_product": False,
}
{
"position": 1,
"thumbnail": "https://cdn.lovense-api.com/UploadFiles/surfease/x3/SnakeySmut.png",
"related_content_id": "WkNzSFNndkhqVlBrOU1cIixcIk16bG1veURtUndJemZN",
"serpapi_related_content_link": "https://cdn.lovense-api.com/UploadFiles/surfease/x3/SnakeySmut.png",
"source": "http://www.vibemate.com",
"source_logo": "",
"title": "Victoria SnakeySmut",
"link": "https://cdn.lovense-api.com/UploadFiles/surfease/x3/SnakeySmut.png",
"original": "https://cdn.lovense-api.com/UploadFiles/surfease/x3/SnakeySmut.png",
"original_width": 2160,
"original_height": 2700,
"is_product": False,
}
def prRed(skk): print("\033[91m{}\033[00m" .format(skk))
def prGreen(skk): print("\033[92m{}\033[00m" .format(skk))
def prYellow(skk): print("\033[93m{}\033[00m" .format(skk))
|