File size: 8,391 Bytes
318db6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from pymilvus import MilvusClient, DataType, FieldSchema, CollectionSchema, Collection

URI = "http://localhost:19530"
def prepare_sex_ed_article_milvus():
    client = MilvusClient(uri=URI)
    client.drop_collection("t_sur_sex_ed_article_spider")

    # Fields
    id = FieldSchema(name="id", dtype=DataType.VARCHAR, is_primary=True, max_length=1000)
    s_title = FieldSchema(name="title", dtype=DataType.VARCHAR, max_length=2000)
    v_title = FieldSchema(name="title_vector", dtype=DataType.FLOAT_VECTOR, dim=1024)
    s_chunk = FieldSchema(name="chunk", dtype=DataType.VARCHAR, max_length=2000)
    v_chunk = FieldSchema(name="chunk_vector", dtype=DataType.FLOAT_VECTOR, dim=1024)
    tags = FieldSchema(name="tags", dtype=DataType.FLOAT_VECTOR, dim=1024)
    link = FieldSchema(name="link", dtype=DataType.VARCHAR, max_length=512)
    category = FieldSchema(name="category", dtype=DataType.VARCHAR, max_length=128)

    # Collection schema
    collection_schema = CollectionSchema(
        fields=[id, s_title, v_title, s_chunk, v_chunk, tags, link, category], 
        auto_id=False,
        enable_dynamic_field=True,
        description="Schema of collection: t_sur_sex_ed_article_spider"
    )

    # indexs
    index_params = client.prepare_index_params()
    index_params.add_index(
        field_name="title_vector",
        index_type="IVF_FLAT",
        metric_type="COSINE",
        params={"nlist": 128}
    )
    index_params.add_index(
        field_name="chunk_vector",
        index_type="IVF_FLAT",
        metric_type="COSINE",
        params={"nlist": 128}
    )
    index_params.add_index(
        field_name="tags",
        index_type="IVF_FLAT",
        metric_type="COSINE",
        params={"nlist": 128}
    )

    # create collection
    client.create_collection(
        collection_name="t_sur_sex_ed_article_spider",
        schema=collection_schema,
        index_params=index_params
    )
    
    status = client.get_load_state("t_sur_sex_ed_article_spider")
    print(f"t_sur_sex_ed_article_spider:{status}")


def prepare_sex_ed_qa_milvus():
    client = MilvusClient(uri=URI)
    client.drop_collection("t_sur_sex_ed_question_answer_spider")
    
    # Fields
    id = FieldSchema(name="id", dtype=DataType.VARCHAR, is_primary=True, max_length=1000)
    url = FieldSchema(name="url", dtype=DataType.VARCHAR, max_length=1000)
    title = FieldSchema(name="title", dtype=DataType.VARCHAR, max_length=2000)
    v_title = FieldSchema(name="title_vector", dtype=DataType.FLOAT_VECTOR, dim=1024)
    content = FieldSchema(name="content", dtype=DataType.VARCHAR, max_length=2000)
    v_content = FieldSchema(name="content_vector", dtype=DataType.FLOAT_VECTOR, dim=1024)
    content_type = FieldSchema(name="content_type", dtype=DataType.VARCHAR, max_length=8)
    author = FieldSchema(name="author", dtype=DataType.VARCHAR, max_length=64)
    avatar_url = FieldSchema(name="avatar_url", dtype=DataType.VARCHAR, max_length=1024)
    likes = FieldSchema(name="likes", dtype=DataType.INT32)
    dislikes = FieldSchema(name="dislikes", dtype=DataType.INT32)
    
    # Collection schema
    collection_schema = CollectionSchema(
        fields=[id, url, title, v_title, content, v_content, content_type, author, avatar_url, likes, dislikes],
        auto_id=False,
        enable_dynamic_fields=True,
        description="Sex Education QA"
    )
    
    # indexs
    index_params = client.prepare_index_params()
    index_params.add_index(
        field_name="title_vector",
        index_type="IVF_FLAT",
        metric_type="COSINE",
        params={"nlist": 128}
    )
    index_params.add_index(
        field_name="content_vector",
        index_type="IVF_FLAT",
        metric_type="COSINE",
        params={"nlist": 128}
    )
    
    # create collection
    client.create_collection(
        collection_name="t_sur_sex_ed_question_answer_spider",
        schema=collection_schema,
        index_params=index_params
    )
    
    status = client.get_load_state("t_sur_sex_ed_question_answer_spider")
    print(f"t_sur_sex_ed_question_answer_spider:{status}")


def prepare_sex_ed_youtube():
    client = MilvusClient(uri=URI)
    client.drop_collection("t_sur_sex_ed_youtube_spider")
    
    # Fields
    id = FieldSchema(name="id", dtype=DataType.VARCHAR, is_primary=True, max_length=1000)
    link = FieldSchema(name="link", dtype=DataType.VARCHAR, max_length=512)
    title = FieldSchema(name="title", dtype=DataType.VARCHAR, max_length=256)
    v_title = FieldSchema(name="title_vector", dtype=DataType.FLOAT_VECTOR, dim=1024)
    views = FieldSchema(name="views", dtype=DataType.VARCHAR, max_length=64)
    author = FieldSchema(name="author", dtype=DataType.VARCHAR, max_length=64)
    picture = FieldSchema(name="picture", dtype=DataType.VARCHAR, max_length=512)
    likes = FieldSchema(name="likes", dtype=DataType.VARCHAR, max_length=64)
    duration = FieldSchema(name="duration", dtype=DataType.VARCHAR, max_length=64)
    tag = FieldSchema(name="tag", dtype=DataType.VARCHAR, max_length=64) 
    v_tag = FieldSchema(name="tag_vector", dtype=DataType.FLOAT_VECTOR, dim=1024)
    delete_status = FieldSchema(name="delete_status", dtype=DataType.INT8)
    
    # Collection schema
    collection_schema = CollectionSchema(
        fields=[id, link, title, v_title, views, author, picture, likes, duration, tag, v_tag, delete_status],
        auto_id=False,
        enable_dynamic_fields=True,
        description="Sex Education videos collection"
    )
    
    # indexs
    index_params = client.prepare_index_params()
    index_params.add_index(
        field_name="title_vector",
        index_type="IVF_FLAT",
        metric_type="COSINE",
        params={"nlist": 128}
    )
    index_params.add_index(
        field_name="tag_vector",
        index_type="IVF_FLAT",
        metric_type="COSINE",
        params={"nlist": 128}
    )
    
    # create collection
    client.create_collection(
        collection_name="t_sur_sex_ed_youtube_spider",
        schema=collection_schema,
        index_params=index_params
    )
    
    status = client.get_load_state(f"t_sur_sex_ed_youtube_spider")
    print(f"t_sur_sex_ed_youtube_spider:{status}")


def prepare_pornVideo():
    client = MilvusClient(uri=URI)
    client.drop_collection("t_sur_video")
    
    # Fields
    url = FieldSchema(name="url", dtype=DataType.VARCHAR, max_length=256, is_primary=True)
    duration = FieldSchema(name="duration", dtype=DataType.INT64)
    viewCount = FieldSchema(name="viewCount", dtype=DataType.INT64)
    cover_picture = FieldSchema(name="coverPicture", dtype=DataType.VARCHAR, max_length=1024)
    title = FieldSchema(name="title", dtype=DataType.VARCHAR, max_length=512)
    v_title = FieldSchema(name="title_vector", dtype=DataType.FLOAT_VECTOR, dim=1024)
    uploader = FieldSchema(name="uploader", dtype=DataType.VARCHAR, max_length=256)
    categories = FieldSchema(name="categories", dtype=DataType.VARCHAR, max_length=1024)
    v_categories = FieldSchema(name="categories_vector", dtype=DataType.FLOAT_VECTOR, dim=1024)
    resource_type = FieldSchema(name="resourceType", dtype=DataType.INT8)
    sexual_preference = FieldSchema(name="sexualPreference", dtype=DataType.INT8)
    
    # Collection Schema
    collection_schema = CollectionSchema(
        fields=[url, duration, viewCount, cover_picture, title, v_title, uploader, categories, v_categories, resource_type, sexual_preference],
        auto_id=False,
        enable_dynamic_fields=True,                                  
        description="Sexual Education Videos"
    )
    
    #indexs
    index_params = client.prepare_index_params()
    index_params.add_index(
        field_name="title_vector",
        index_type="IVF_FLAT",
        metric_type="COSINE",
        params={"nlist": 128}
    )
    index_params.add_index(
        field_name="categories_vector",
        index_type="IVF_FLAT",
        metric_type="COSINE",
        params={"nlist": 128}
    )
    
    # create collection
    client.create_collection(
        collection_name="t_sur_video",
        schema=collection_schema,
        index_params=index_params
    )
    
    status = client.get_load_state("t_sur_video")
    print(f"t_sur_video:{status}")
    
if __name__ == '__main__':
    prepare_sex_ed_article_milvus()
    prepare_sex_ed_qa_milvus()
    prepare_sex_ed_youtube()
    prepare_pornVideo()