import streamlit as st import streamlit.components.v1 as components import torch import numpy as np import av import logging import os from transformers import AutoModelForCausalLM, AutoTokenizer import whisper from TTS.api import TTS from streamlit_webrtc import webrtc_streamer, WebRtcMode, AudioProcessorBase # Configure logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', handlers=[ logging.FileHandler("language_companion.log"), logging.StreamHandler() ] ) logger = logging.getLogger(__name__) # Comprehensive Avatar Personas AVATAR_PERSONAS = { "Rat": { "name": "Puzzle Master Rat", "description": "I love solving word puzzles and making learning fun!", "teaching_style": "Learning is like solving a fun game", "learning_approach": "I break big words into small, easy pieces", "motivation_techniques": [ "Turn hard words into exciting challenges", "Make learning feel like play" ], "voice_sample": "Let's solve this language puzzle together!", "image": "rat.png" }, "Ox": { "name": "Professor Steady Ox", "description": "I help you learn English step by step, slowly and carefully", "teaching_style": "Learning is like building a big tower, one block at a time", "learning_approach": "We go slow and make sure you understand everything", "motivation_techniques": [ "Break big lessons into small, easy parts", "Celebrate every little success" ], "voice_sample": "We will build your English skills step by step, carefully and steadily.", "image": "ox.png" }, "Tiger": { "name": "Adventure Coach Tiger", "description": "Learning English is an exciting adventure!", "teaching_style": "Every English lesson is a fun mission", "learning_approach": "We learn by trying new things and having fun", "motivation_techniques": [ "Make learning feel like a game", "Cheer you on with lots of energy" ], "voice_sample": "Are you ready for an exciting English language adventure?", "image": "tiger.png" }, "Rabbit": { "name": "Storyteller Rabbit", "description": "I love telling stories that help you learn English", "teaching_style": "Learning through fun and friendly stories", "learning_approach": "Words become magic when they tell a story", "motivation_techniques": [ "Use funny and interesting stories", "Help you imagine new words" ], "voice_sample": "Let me tell you a story that will help you learn English.", "image": "rabbit.png" }, "Dragon": { "name": "Smart Dragon", "description": "I help you understand English like a language explorer", "teaching_style": "Learning is like discovering a new world", "learning_approach": "We look at words like they are treasure maps", "motivation_techniques": [ "Make learning feel like an exciting discovery", "Explain things in a clear way" ], "voice_sample": "Let us explore the world of English together!", "image": "dragon.png" }, "Snake": { "name": "Wise Snake", "description": "I help you understand English slowly and carefully", "teaching_style": "Learning is like solving a gentle puzzle", "learning_approach": "We think about words and their meanings", "motivation_techniques": [ "Take time to understand each word", "Think about how words connect" ], "voice_sample": "Let's understand language together, step by step.", "image": "snake.png" }, "Horse": { "name": "Energetic Coach Horse", "description": "Let's speak English and have fun!", "teaching_style": "Learning is an active, exciting game", "learning_approach": "We learn by speaking and playing", "motivation_techniques": [ "Speak English with lots of energy", "Make learning feel like a fun activity" ], "voice_sample": "Come on, let's speak English and have fun doing it!", "image": "horse.png" }, "Goat": { "name": "Creative Goat", "description": "I help you draw pictures with English words", "teaching_style": "Learning is like creating colorful art", "learning_approach": "We use imagination to learn words", "motivation_techniques": [ "Make words feel like colorful pictures", "Use creativity to remember" ], "voice_sample": "Let's paint beautiful pictures with our English words!", "image": "sheep.png" }, "Monkey": { "name": "Playful Monkey", "description": "Learning English is the most fun game!", "teaching_style": "Every lesson is a funny, exciting game", "learning_approach": "We laugh and learn at the same time", "motivation_techniques": [ "Turn learning into a funny game", "Make English feel like play" ], "voice_sample": "Learning English is the most fun game we'll play today!", "image": "monkey.png" }, "Rooster": { "name": "Pronunciation Rooster", "description": "I help you speak English clearly and correctly", "teaching_style": "Learning is about saying words just right", "learning_approach": "We practice saying words perfectly", "motivation_techniques": [ "Practice saying words clearly", "Make pronunciation feel like a fun challenge" ], "voice_sample": "Listen carefully and repeat after me, with perfect pronunciation!", "image": "rooster.png" }, "Dog": { "name": "Friendly Dog", "description": "I'm always here to help you learn English", "teaching_style": "Learning is about being kind and patient", "learning_approach": "We learn together, step by step", "motivation_techniques": [ "Cheer you on with lots of love", "Make you feel confident" ], "voice_sample": "You're doing great! Keep practicing your English.", "image": "dog.png" }, "Pig": { "name": "Calm Pig", "description": "Let's learn English together, nice and easy", "teaching_style": "Learning is relaxed and comfortable", "learning_approach": "We take our time and enjoy learning", "motivation_techniques": [ "Make learning feel relaxed", "No stress, just fun" ], "voice_sample": "Let's learn English together, nice and easy.", "image": "pig.png" } } class CharacterSelector: def __init__(self): self.tts_model = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts") def create_avatar_carousel(self): """ Create a Swiper-like avatar carousel using HTML, CSS, and JavaScript """ carousel_html = """
""" # Generate slides for each avatar for avatar_key, avatar_info in AVATAR_PERSONAS.items(): carousel_html += f"""
{avatar_info['name']}

{avatar_info['name']}

{avatar_info['description']}

""" carousel_html += """
""" return carousel_html def generate_voice_preview(self, avatar_key): """Generate voice preview for a specific avatar""" avatar = AVATAR_PERSONAS[avatar_key] try: # Generate voice preview self.tts_model.tts_to_file( text=avatar['voice_sample'], file_path=f"{avatar_key}_preview.wav" ) return f"{avatar_key}_preview.wav" except Exception as e: logging.error(f"Voice preview error for {avatar_key}: {e}") return None def main(): st.title("Language Learning Companion") # Character Selection Carousel character_selector = CharacterSelector() # Render Swiper Carousel carousel_html = character_selector.create_avatar_carousel() components.html(carousel_html, height=600, scrolling=True) # JavaScript communication for avatar selection and voice preview components.html(""" """, height=0) # Handle Voice Preview preview_avatar = st.experimental_get_query_params().get('preview_voice', [None])[0] if preview_avatar: preview_audio = character_selector.generate_voice_preview(preview_avatar) if preview_audio: st.audio(preview_audio, format='audio/wav') # Selected Avatar Handling selected_avatar = st.experimental_get_query_params().get('selected_avatar', [None])[0] if selected_avatar: # Initialize Language Learning Companion with selected avatar companion = LanguageLearningCompanion(selected_avatar) # Rest of the conversation interface... if __name__ == "__main__": main() class AudioProcessor(AudioProcessorBase): def __init__(self, companion): self.companion = companion self.audio_buffer = [] self.sample_rate = 16000 self.recording_duration = 5 # 5 seconds of audio before processing def recv(self, frame: av.AudioFrame) -> av.AudioFrame: # Convert audio frame to numpy array audio_input = frame.to_ndarray(format="f32") # Accumulate audio if len(audio_input.shape) > 1: audio_input = audio_input[:, 0] # Take first channel if stereo self.audio_buffer.extend(audio_input) # Process when buffer reaches sufficient length if len(self.audio_buffer) >= self.sample_rate * self.recording_duration: try: # Convert buffer to wav file audio_array = np.array(self.audio_buffer[:self.sample_rate * self.recording_duration]) sf.write('temp_recording.wav', audio_array, self.sample_rate) # Transcribe transcription = self.companion.transcribe_audio('temp_recording.wav') # Generate response if transcription: response = self.companion.generate_response(transcription) # Text to Speech if response: audio_response = self.companion.text_to_speech(response) # Display results st.session_state.transcription = transcription st.session_state.response = response # Clear buffer self.audio_buffer = [] except Exception as e: logging.error(f"Audio processing error: {e}") st.error("Error processing audio") self.audio_buffer = [] return frame def main(): st.title("Language Learning Companion") # Initialize session state for storing conversation if 'transcription' not in st.session_state: st.session_state.transcription = "" if 'response' not in st.session_state: st.session_state.response = "" # Avatar Selection avatar_selection = st.selectbox( "Choose Your Learning Buddy", list(AVATAR_PERSONAS.keys()) ) # Initialize Companion companion = LanguageLearningCompanion(avatar_selection) # WebRTC Audio Capture with Custom Processor ctx = webrtc_streamer( key="language-learning", mode=WebRtcMode.SENDRECV, audio_processor_factory=lambda: AudioProcessor(companion), media_stream_constraints={ "audio": True, "video": False } ) # Display Conversation if st.session_state.transcription: st.subheader("Your Speech") st.write(st.session_state.transcription) if st.session_state.response: st.subheader("Companion's Response") st.write(st.session_state.response) # Optional: Play response audio if os.path.exists('response.wav'): st.audio('response.wav', format='audio/wav') if __name__ == "__main__": main() class LanguageLearningCompanion: def __init__(self, avatar_name): try: # Model Initialization with Quantization self.model = AutoModelForCausalLM.from_pretrained( "mistralai/Mistral-7B-Instruct-v0.1", load_in_8bit=True, device_map="auto" ) self.tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1") # Speech Models self.whisper_model = whisper.load_model("base") self.tts_model = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts") # Avatar Selection self.avatar = AVATAR_PERSONAS.get(avatar_name, AVATAR_PERSONAS["Rat"]) logger.info(f"Initialized Language Learning Companion with {avatar_name}") except Exception as e: logger.error(f"Model initialization error: {e}") st.error("Error loading models. Please try again later.") def transcribe_audio(self, audio_path): """Transcribe audio using Whisper""" try: result = self.whisper_model.transcribe(audio_path) logger.info(f"Successfully transcribed audio: {result['text']}") return result['text'] except Exception as e: logger.error(f"Transcription error: {e}") st.error("Error transcribing audio.") return None def generate_response(self, user_input): """Generate educational response using Mistral""" try: prompt = f""" Avatar: {self.avatar['name']} Teaching Style: {self.avatar['teaching_style']} Learning Approach: {self.avatar['learning_approach']} User Input: {user_input} Generate an encouraging, educational response that: 1. Addresses the user's input 2. Provides gentle language learning guidance 3. Maintains an engaging, child-friendly tone """ inputs = self.tokenizer(prompt, return_tensors="pt") outputs = self.model.generate(**inputs, max_length=200) response = self.tokenizer.decode(outputs[0], skip_special_tokens=True) logger.info(f"Generated response for input: {user_input}") return response except Exception as e: logger.error(f"Response generation error: {e}") st.error("Error generating response.") return None def text_to_speech(self, text): """Convert text to speech""" try: self.tts_model.tts_to_file(text=text, file_path="response.wav") logger.info("Successfully converted text to speech") return "response.wav" except Exception as e: logger.error(f"Text-to-speech conversion error: {e}") st.error("Error converting text to speech.") return None def main(): st.title("Language Learning Companion") # Avatar Selection avatar_selection = st.selectbox( "Choose Your Learning Buddy", list(AVATAR_PERSONAS.keys()) ) # Initialize Companion companion = LanguageLearningCompanion(avatar_selection) # WebRTC Audio Capture webrtc_ctx = webrtc_streamer( key="language-companion", mode=WebRtcMode.SENDRECV, media_stream_constraints={"audio": True, "video": False} ) if st.button("Transcribe and Respond"): if webrtc_ctx.audio_receiver: try: # Placeholder for audio processing # In a real implementation, you'd capture and process the audio st.warning("Audio processing not fully implemented in this version") except Exception as e: logger.error(f"WebRTC audio processing error: {e}") st.error("Error processing audio.") if __name__ == "__main__": main()