Spaces:
Build error
Build error
File size: 19,666 Bytes
ee6e7eb b9d097b f989e9b db043ff b9d097b d154c81 b9d097b d154c81 f989e9b d154c81 f989e9b d154c81 f989e9b b9d097b d154c81 b9d097b f989e9b d154c81 b9d097b d154c81 b9d097b f989e9b b9d097b d154c81 b9d097b 8bb1d1f b9d097b d154c81 b9d097b 8bb1d1f b9d097b d154c81 b9d097b 8bb1d1f b9d097b d154c81 b9d097b 8bb1d1f b9d097b d154c81 b9d097b 8bb1d1f b9d097b d154c81 b9d097b 8bb1d1f b9d097b d154c81 b9d097b 8bb1d1f b9d097b d154c81 b9d097b 8bb1d1f b9d097b d154c81 b9d097b 8bb1d1f b9d097b d154c81 b9d097b f989e9b ee6e7eb b9d097b d154c81 f989e9b d154c81 f989e9b d154c81 f989e9b d154c81 f989e9b d154c81 f989e9b d154c81 f989e9b d154c81 f989e9b d154c81 f989e9b d154c81 f989e9b d154c81 f989e9b d154c81 f989e9b d154c81 f989e9b d154c81 f989e9b d154c81 f989e9b d154c81 f989e9b d154c81 f989e9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 |
import streamlit as st
import streamlit.components.v1 as components
import torch
import numpy as np
import av
import logging
import os
from transformers import AutoModelForCausalLM, AutoTokenizer
import whisper
from TTS.api import TTS
from streamlit_webrtc import webrtc_streamer, WebRtcMode, AudioProcessorBase
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("language_companion.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Comprehensive Avatar Personas
AVATAR_PERSONAS = {
"Rat": {
"name": "Puzzle Master Rat",
"description": "I love solving word puzzles and making learning fun!",
"teaching_style": "Learning is like solving a fun game",
"learning_approach": "I break big words into small, easy pieces",
"motivation_techniques": [
"Turn hard words into exciting challenges",
"Make learning feel like play"
],
"voice_sample": "Let's solve this language puzzle together!",
"image": "rat.png"
},
"Ox": {
"name": "Professor Steady Ox",
"description": "I help you learn English step by step, slowly and carefully",
"teaching_style": "Learning is like building a big tower, one block at a time",
"learning_approach": "We go slow and make sure you understand everything",
"motivation_techniques": [
"Break big lessons into small, easy parts",
"Celebrate every little success"
],
"voice_sample": "We will build your English skills step by step, carefully and steadily.",
"image": "ox.png"
},
"Tiger": {
"name": "Adventure Coach Tiger",
"description": "Learning English is an exciting adventure!",
"teaching_style": "Every English lesson is a fun mission",
"learning_approach": "We learn by trying new things and having fun",
"motivation_techniques": [
"Make learning feel like a game",
"Cheer you on with lots of energy"
],
"voice_sample": "Are you ready for an exciting English language adventure?",
"image": "tiger.png"
},
"Rabbit": {
"name": "Storyteller Rabbit",
"description": "I love telling stories that help you learn English",
"teaching_style": "Learning through fun and friendly stories",
"learning_approach": "Words become magic when they tell a story",
"motivation_techniques": [
"Use funny and interesting stories",
"Help you imagine new words"
],
"voice_sample": "Let me tell you a story that will help you learn English.",
"image": "rabbit.png"
},
"Dragon": {
"name": "Smart Dragon",
"description": "I help you understand English like a language explorer",
"teaching_style": "Learning is like discovering a new world",
"learning_approach": "We look at words like they are treasure maps",
"motivation_techniques": [
"Make learning feel like an exciting discovery",
"Explain things in a clear way"
],
"voice_sample": "Let us explore the world of English together!",
"image": "dragon.png"
},
"Snake": {
"name": "Wise Snake",
"description": "I help you understand English slowly and carefully",
"teaching_style": "Learning is like solving a gentle puzzle",
"learning_approach": "We think about words and their meanings",
"motivation_techniques": [
"Take time to understand each word",
"Think about how words connect"
],
"voice_sample": "Let's understand language together, step by step.",
"image": "snake.png"
},
"Horse": {
"name": "Energetic Coach Horse",
"description": "Let's speak English and have fun!",
"teaching_style": "Learning is an active, exciting game",
"learning_approach": "We learn by speaking and playing",
"motivation_techniques": [
"Speak English with lots of energy",
"Make learning feel like a fun activity"
],
"voice_sample": "Come on, let's speak English and have fun doing it!",
"image": "horse.png"
},
"Goat": {
"name": "Creative Goat",
"description": "I help you draw pictures with English words",
"teaching_style": "Learning is like creating colorful art",
"learning_approach": "We use imagination to learn words",
"motivation_techniques": [
"Make words feel like colorful pictures",
"Use creativity to remember"
],
"voice_sample": "Let's paint beautiful pictures with our English words!",
"image": "sheep.png"
},
"Monkey": {
"name": "Playful Monkey",
"description": "Learning English is the most fun game!",
"teaching_style": "Every lesson is a funny, exciting game",
"learning_approach": "We laugh and learn at the same time",
"motivation_techniques": [
"Turn learning into a funny game",
"Make English feel like play"
],
"voice_sample": "Learning English is the most fun game we'll play today!",
"image": "monkey.png"
},
"Rooster": {
"name": "Pronunciation Rooster",
"description": "I help you speak English clearly and correctly",
"teaching_style": "Learning is about saying words just right",
"learning_approach": "We practice saying words perfectly",
"motivation_techniques": [
"Practice saying words clearly",
"Make pronunciation feel like a fun challenge"
],
"voice_sample": "Listen carefully and repeat after me, with perfect pronunciation!",
"image": "rooster.png"
},
"Dog": {
"name": "Friendly Dog",
"description": "I'm always here to help you learn English",
"teaching_style": "Learning is about being kind and patient",
"learning_approach": "We learn together, step by step",
"motivation_techniques": [
"Cheer you on with lots of love",
"Make you feel confident"
],
"voice_sample": "You're doing great! Keep practicing your English.",
"image": "dog.png"
},
"Pig": {
"name": "Calm Pig",
"description": "Let's learn English together, nice and easy",
"teaching_style": "Learning is relaxed and comfortable",
"learning_approach": "We take our time and enjoy learning",
"motivation_techniques": [
"Make learning feel relaxed",
"No stress, just fun"
],
"voice_sample": "Let's learn English together, nice and easy.",
"image": "pig.png"
}
}
class CharacterSelector:
def __init__(self):
self.tts_model = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts")
def create_avatar_carousel(self):
"""
Create a Swiper-like avatar carousel using HTML, CSS, and JavaScript
"""
carousel_html = """
<link rel="stylesheet" href="https://unpkg.com/swiper/swiper-bundle.min.css">
<script src="https://unpkg.com/swiper/swiper-bundle.min.js"></script>
<style>
.swiper-container {
width: 100%;
height: 500px;
}
.swiper-slide {
text-align: center;
background: #f4f4f4;
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
border-radius: 18px;
padding: 20px;
}
.avatar-image {
width: 250px;
height: 250px;
object-fit: cover;
border-radius: 50%;
margin-bottom: 15px;
}
.voice-preview-btn {
margin-top: 10px;
padding: 10px;
background-color: #4CAF50;
color: white;
border: none;
border-radius: 5px;
cursor: pointer;
}
</style>
<div class="swiper-container">
<div class="swiper-wrapper">
"""
# Generate slides for each avatar
for avatar_key, avatar_info in AVATAR_PERSONAS.items():
carousel_html += f"""
<div class="swiper-slide" data-avatar="{avatar_key}">
<img src="images/{avatar_info['image']}" class="avatar-image" alt="{avatar_info['name']}">
<h3>{avatar_info['name']}</h3>
<p>{avatar_info['description']}</p>
<button class="voice-preview-btn" onclick="previewVoice('{avatar_key}')">
Preview Voice
</button>
</div>
"""
carousel_html += """
</div>
<div class="swiper-pagination"></div>
<div class="swiper-button-prev"></div>
<div class="swiper-button-next"></div>
</div>
<script>
var swiper = new Swiper('.swiper-container', {
slidesPerView: 'auto',
centeredSlides: true,
spaceBetween: 30,
pagination: {
el: '.swiper-pagination',
clickable: true
},
navigation: {
nextEl: '.swiper-button-next',
prevEl: '.swiper-button-prev',
}
});
function previewVoice(avatarKey) {
window.parent.postMessage({
type: 'previewVoice',
avatarKey: avatarKey
}, '*');
}
function selectAvatar(avatarKey) {
window.parent.postMessage({
type: 'avatarSelected',
avatarKey: avatarKey
}, '*');
}
</script>
"""
return carousel_html
def generate_voice_preview(self, avatar_key):
"""Generate voice preview for a specific avatar"""
avatar = AVATAR_PERSONAS[avatar_key]
try:
# Generate voice preview
self.tts_model.tts_to_file(
text=avatar['voice_sample'],
file_path=f"{avatar_key}_preview.wav"
)
return f"{avatar_key}_preview.wav"
except Exception as e:
logging.error(f"Voice preview error for {avatar_key}: {e}")
return None
def main():
st.title("Language Learning Companion")
# Character Selection Carousel
character_selector = CharacterSelector()
# Render Swiper Carousel
carousel_html = character_selector.create_avatar_carousel()
components.html(carousel_html, height=600, scrolling=True)
# JavaScript communication for avatar selection and voice preview
components.html("""
<script>
window.addEventListener('message', function(event) {
if (event.data.type === 'avatarSelected') {
window.parent.postMessage({
type: 'streamlit:setComponentValue',
key: 'selected_avatar',
value: event.data.avatarKey
}, '*');
}
if (event.data.type === 'previewVoice') {
window.parent.postMessage({
type: 'streamlit:setComponentValue',
key: 'preview_voice',
value: event.data.avatarKey
}, '*');
}
});
</script>
""", height=0)
# Handle Voice Preview
preview_avatar = st.experimental_get_query_params().get('preview_voice', [None])[0]
if preview_avatar:
preview_audio = character_selector.generate_voice_preview(preview_avatar)
if preview_audio:
st.audio(preview_audio, format='audio/wav')
# Selected Avatar Handling
selected_avatar = st.experimental_get_query_params().get('selected_avatar', [None])[0]
if selected_avatar:
# Initialize Language Learning Companion with selected avatar
companion = LanguageLearningCompanion(selected_avatar)
# Rest of the conversation interface...
if __name__ == "__main__":
main()
class AudioProcessor(AudioProcessorBase):
def __init__(self, companion):
self.companion = companion
self.audio_buffer = []
self.sample_rate = 16000
self.recording_duration = 5 # 5 seconds of audio before processing
def recv(self, frame: av.AudioFrame) -> av.AudioFrame:
# Convert audio frame to numpy array
audio_input = frame.to_ndarray(format="f32")
# Accumulate audio
if len(audio_input.shape) > 1:
audio_input = audio_input[:, 0] # Take first channel if stereo
self.audio_buffer.extend(audio_input)
# Process when buffer reaches sufficient length
if len(self.audio_buffer) >= self.sample_rate * self.recording_duration:
try:
# Convert buffer to wav file
audio_array = np.array(self.audio_buffer[:self.sample_rate * self.recording_duration])
sf.write('temp_recording.wav', audio_array, self.sample_rate)
# Transcribe
transcription = self.companion.transcribe_audio('temp_recording.wav')
# Generate response
if transcription:
response = self.companion.generate_response(transcription)
# Text to Speech
if response:
audio_response = self.companion.text_to_speech(response)
# Display results
st.session_state.transcription = transcription
st.session_state.response = response
# Clear buffer
self.audio_buffer = []
except Exception as e:
logging.error(f"Audio processing error: {e}")
st.error("Error processing audio")
self.audio_buffer = []
return frame
def main():
st.title("Language Learning Companion")
# Initialize session state for storing conversation
if 'transcription' not in st.session_state:
st.session_state.transcription = ""
if 'response' not in st.session_state:
st.session_state.response = ""
# Avatar Selection
avatar_selection = st.selectbox(
"Choose Your Learning Buddy",
list(AVATAR_PERSONAS.keys())
)
# Initialize Companion
companion = LanguageLearningCompanion(avatar_selection)
# WebRTC Audio Capture with Custom Processor
ctx = webrtc_streamer(
key="language-learning",
mode=WebRtcMode.SENDRECV,
audio_processor_factory=lambda: AudioProcessor(companion),
media_stream_constraints={
"audio": True,
"video": False
}
)
# Display Conversation
if st.session_state.transcription:
st.subheader("Your Speech")
st.write(st.session_state.transcription)
if st.session_state.response:
st.subheader("Companion's Response")
st.write(st.session_state.response)
# Optional: Play response audio
if os.path.exists('response.wav'):
st.audio('response.wav', format='audio/wav')
if __name__ == "__main__":
main()
class LanguageLearningCompanion:
def __init__(self, avatar_name):
try:
# Model Initialization with Quantization
self.model = AutoModelForCausalLM.from_pretrained(
"mistralai/Mistral-7B-Instruct-v0.1",
load_in_8bit=True,
device_map="auto"
)
self.tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
# Speech Models
self.whisper_model = whisper.load_model("base")
self.tts_model = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts")
# Avatar Selection
self.avatar = AVATAR_PERSONAS.get(avatar_name, AVATAR_PERSONAS["Rat"])
logger.info(f"Initialized Language Learning Companion with {avatar_name}")
except Exception as e:
logger.error(f"Model initialization error: {e}")
st.error("Error loading models. Please try again later.")
def transcribe_audio(self, audio_path):
"""Transcribe audio using Whisper"""
try:
result = self.whisper_model.transcribe(audio_path)
logger.info(f"Successfully transcribed audio: {result['text']}")
return result['text']
except Exception as e:
logger.error(f"Transcription error: {e}")
st.error("Error transcribing audio.")
return None
def generate_response(self, user_input):
"""Generate educational response using Mistral"""
try:
prompt = f"""
Avatar: {self.avatar['name']}
Teaching Style: {self.avatar['teaching_style']}
Learning Approach: {self.avatar['learning_approach']}
User Input: {user_input}
Generate an encouraging, educational response that:
1. Addresses the user's input
2. Provides gentle language learning guidance
3. Maintains an engaging, child-friendly tone
"""
inputs = self.tokenizer(prompt, return_tensors="pt")
outputs = self.model.generate(**inputs, max_length=200)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
logger.info(f"Generated response for input: {user_input}")
return response
except Exception as e:
logger.error(f"Response generation error: {e}")
st.error("Error generating response.")
return None
def text_to_speech(self, text):
"""Convert text to speech"""
try:
self.tts_model.tts_to_file(text=text, file_path="response.wav")
logger.info("Successfully converted text to speech")
return "response.wav"
except Exception as e:
logger.error(f"Text-to-speech conversion error: {e}")
st.error("Error converting text to speech.")
return None
def main():
st.title("Language Learning Companion")
# Avatar Selection
avatar_selection = st.selectbox(
"Choose Your Learning Buddy",
list(AVATAR_PERSONAS.keys())
)
# Initialize Companion
companion = LanguageLearningCompanion(avatar_selection)
# WebRTC Audio Capture
webrtc_ctx = webrtc_streamer(
key="language-companion",
mode=WebRtcMode.SENDRECV,
media_stream_constraints={"audio": True, "video": False}
)
if st.button("Transcribe and Respond"):
if webrtc_ctx.audio_receiver:
try:
# Placeholder for audio processing
# In a real implementation, you'd capture and process the audio
st.warning("Audio processing not fully implemented in this version")
except Exception as e:
logger.error(f"WebRTC audio processing error: {e}")
st.error("Error processing audio.")
if __name__ == "__main__":
main() |