File size: 10,983 Bytes
ee6e7eb f989e9b db043ff f989e9b 8bb1d1f f989e9b 8bb1d1f f989e9b 8bb1d1f f989e9b 8bb1d1f f989e9b 8bb1d1f f989e9b 8bb1d1f f989e9b ee6e7eb f989e9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
import streamlit as st
import torch
import numpy as np
import re
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
AutoModelForSpeechSeq2Seq,
AutoProcessor
)
import streamlit.components.v1 as components
# Avatar Personas (same as previous implementation)
AVATAR_PERSONAS = {
"Rat": {
"image": "rat.png",
"name": "Puzzle Master Rat",
"description": "Clever and resourceful. Loves puzzles and word games.",
"sample": "Let's solve a riddle together!",
"teaching_style": "Analytical and game-based learning",
"learning_tips": [
"Break complex ideas into smaller puzzles",
"Use word games to learn vocabulary",
"Think critically about language patterns"
]
},
"Ox": {
"image": "ox.png",
"name": "Professor Ox",
"description": "Strong and dependable. Very patient when explaining concepts.",
"sample": "I will guide you step by step.",
"teaching_style": "Structured and systematic approach",
"learning_tips": [
"Learn grammar rules systematically",
"Practice one concept at a time",
"Build a strong foundation"
]
},
"Tiger": {
"image": "tiger.png",
"name": "Adventure Coach Tiger",
"description": "Brave and energetic. Loves exciting challenges.",
"sample": "Let's make learning an adventure!",
"teaching_style": "High-energy and challenge-driven",
"learning_tips": [
"Turn learning into a fun challenge",
"Set exciting language goals",
"Celebrate every bit of progress"
]
},
"Rabbit": {
"image": "rabbit.png",
"name": "Storyteller Rabbit",
"description": "Gentle and kind. Encourages learning through storytelling.",
"sample": "I have a story to share with you!",
"teaching_style": "Narrative and empathetic learning",
"learning_tips": [
"Learn through engaging stories",
"Connect language to emotional experiences",
"Use imagination to remember vocabulary"
]
},
"Dragon": {
"image": "dragon.png",
"name": "Scholar Dragon",
"description": "Confident and intelligent. Explains ideas clearly.",
"sample": "I will help you think like a scholar!",
"teaching_style": "Intellectual and precise instruction",
"learning_tips": [
"Understand the logic behind language rules",
"Analyze language structures",
"Develop a scholarly approach to learning"
]
},
"Snake": {
"image": "snake.png",
"name": "Philosopher Snake",
"description": "Calm and analytical. Gives insightful explanations.",
"sample": "Let's break this down logically!",
"teaching_style": "Reflective and analytical learning",
"learning_tips": [
"Think deeply about language nuances",
"Understand the 'why' behind grammar rules",
"Develop critical thinking in language"
]
},
"Horse": {
"image": "horse.png",
"name": "Energetic Coach Horse",
"description": "Cheerful and enthusiastic. Encourages active participation.",
"sample": "Come on, let's say it together!",
"teaching_style": "Interactive and participatory learning",
"learning_tips": [
"Practice speaking out loud",
"Engage actively in conversations",
"Build confidence through participation"
]
},
"Goat": {
"image": "goat.png",
"name": "Creative Mentor Goat",
"description": "Creative and friendly. Uses fun examples.",
"sample": "Let's use pictures to understand this!",
"teaching_style": "Visual and creative learning",
"learning_tips": [
"Use visual aids to learn vocabulary",
"Create mental images for new words",
"Learn through creative and fun methods"
]
},
"Monkey": {
"image": "monkey.png",
"name": "Playful Genius Monkey",
"description": "Smart and playful. Makes learning fun.",
"sample": "I love word games! Do you?",
"teaching_style": "Playful and game-oriented learning",
"learning_tips": [
"Turn learning into a fun game",
"Use humor to remember language",
"Enjoy the process of learning"
]
},
"Rooster": {
"image": "rooster.png",
"name": "Pronunciation Master Rooster",
"description": "Confident and vocal. Encourages clear pronunciation.",
"sample": "Let's practice speaking clearly!",
"teaching_style": "Phonetic and pronunciation-focused",
"learning_tips": [
"Focus on clear pronunciation",
"Practice accent and intonation",
"Listen carefully to native speakers"
]
},
"Dog": {
"image": "dog.png",
"name": "Supportive Buddy Dog",
"description": "Loyal and encouraging. Builds confidence in learners.",
"sample": "You're doing a great job!",
"teaching_style": "Supportive and confidence-building",
"learning_tips": [
"Believe in your learning abilities",
"Don't fear making mistakes",
"Stay motivated and persistent"
]
},
"Pig": {
"image": "pig.png",
"name": "Relaxed Mentor Pig",
"description": "Easygoing and kind. Makes learning feel natural.",
"sample": "Let's take it step by step together!",
"teaching_style": "Relaxed and natural learning",
"learning_tips": [
"Learn at your own pace",
"Stay calm and enjoy the process",
"Make learning a comfortable experience"
]
}
}
class AdvancedLanguageLearningAssistant:
def __init__(self, avatar_name):
# Existing implementation from previous version
self.avatar = AVATAR_PERSONAS[avatar_name]
# Simplified model loading for Hugging Face Spaces
try:
self.llm_model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")
self.llm_tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
except Exception as e:
st.error(f"Model loading error: {e}")
self.llm_model = None
self.llm_tokenizer = None
def generate_response(self, user_input):
if not self.llm_model:
return "Sorry, I'm having trouble generating a response."
# Incorporate avatar's unique personality
prompt = f"""
Avatar: {self.avatar['name']}
Teaching Style: {self.avatar['teaching_style']}
User Input: {user_input}
Generate a response that:
1. Reflects the avatar's unique personality
2. Provides encouraging language learning support
3. Maintains an engaging tone
"""
try:
inputs = self.llm_tokenizer.encode(prompt, return_tensors='pt')
outputs = self.llm_model.generate(
inputs,
max_length=150,
temperature=0.7
)
response = self.llm_tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
except Exception as e:
return f"Sorry, I'm having trouble generating a response. Error: {e}"
def avatar_selection_page():
"""
First stage: Avatar Selection
"""
st.title("Choose Your Learning Companion")
# Custom CSS for avatar selection
st.markdown("""
<style>
.avatar-grid {
display: grid;
grid-template-columns: repeat(3, 1fr);
gap: 20px;
padding: 20px;
}
.avatar-card {
border: 2px solid #f0f0f0;
border-radius: 10px;
padding: 15px;
text-align: center;
transition: all 0.3s ease;
}
.avatar-card:hover {
transform: scale(1.05);
border-color: #4CAF50;
}
.avatar-image {
width: 200px;
height: 200px;
object-fit: cover;
border-radius: 50%;
}
</style>
""", unsafe_allow_html=True)
# Avatar Selection Grid
st.markdown('<div class="avatar-grid">', unsafe_allow_html=True)
for avatar_key, avatar_info in AVATAR_PERSONAS.items():
st.markdown(f'''
<div class="avatar-card">
<img src="images/{avatar_info['image']}" class="avatar-image" alt="{avatar_info['name']}">
<h3>{avatar_info['name']}</h3>
<p>{avatar_info['description']}</p>
<button onclick="selectAvatar('{avatar_key}')">Select {avatar_info['name']}</button>
</div>
''', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
# JavaScript to handle avatar selection
st.markdown("""
<script>
function selectAvatar(avatarKey) {
window.parent.postMessage({type: 'avatarSelected', avatarKey: avatarKey}, '*');
}
</script>
""", unsafe_allow_html=True)
def conversation_page(selected_avatar):
"""
Second stage: Conversation Interface
"""
st.title(f"Learning English with {AVATAR_PERSONAS[selected_avatar]['name']}")
# Initialize Assistant
assistant = AdvancedLanguageLearningAssistant(selected_avatar)
# Conversation Interface
user_input = st.text_input("Type your message in English:")
if st.button("Send"):
if user_input:
response = assistant.generate_response(user_input)
st.write(f"🤖 {response}")
def main():
# Initialize session state for tracking app stage
if 'stage' not in st.session_state:
st.session_state.stage = 'avatar_selection'
if 'selected_avatar' not in st.session_state:
st.session_state.selected_avatar = None
# Handle avatar selection
components.html("""
<script>
window.addEventListener('message', function(event) {
if (event.data.type === 'avatarSelected') {
window.parent.postMessage({
type: 'streamlit:setComponentValue',
key: 'selected_avatar',
value: event.data.avatarKey
}, '*');
}
});
</script>
""", height=0)
# Retrieve selected avatar
selected_avatar = st.experimental_get_query_params().get('selected_avatar', [None])[0]
if selected_avatar:
st.session_state.selected_avatar = selected_avatar
st.session_state.stage = 'conversation'
# Render appropriate page based on stage
if st.session_state.stage == 'avatar_selection':
avatar_selection_page()
elif st.session_state.stage == 'conversation':
conversation_page(st.session_state.selected_avatar)
if __name__ == "__main__":
main() |