Spaces:
Running
Running
torchmoji init model
Browse files
app.py
CHANGED
@@ -14,7 +14,7 @@ from transformers import AutoModel, AutoTokenizer
|
|
14 |
model_name = "Pendrokar/TorchMoji"
|
15 |
model = AutoModel.from_pretrained(model_name)
|
16 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
-
model_path =
|
18 |
vocab_path = './' + model_name + "/vocabulary.json"
|
19 |
|
20 |
def top_elements(array, k):
|
@@ -23,22 +23,12 @@ def top_elements(array, k):
|
|
23 |
|
24 |
maxlen = 30
|
25 |
|
26 |
-
# print('Tokenizing using dictionary from {}'.format(vocab_path))
|
27 |
-
# with open(vocab_path, 'r') as f:
|
28 |
-
# vocabulary = json.load(f)
|
29 |
-
|
30 |
st = SentenceTokenizer(tokenizer.get_added_vocab(), maxlen)
|
31 |
|
32 |
-
print('Loading model from {}.'.format(model_path))
|
33 |
model = torchmoji_emojis(model_path)
|
34 |
-
print(model)
|
35 |
-
|
36 |
-
def doImportableFunction():
|
37 |
-
return
|
38 |
|
39 |
def predict(deepmoji_analysis):
|
40 |
output_text = "\n"
|
41 |
-
print('Running predictions.')
|
42 |
tokenized, _, _ = st.tokenize_sentences(TEST_SENTENCES)
|
43 |
prob = model(tokenized)
|
44 |
|
|
|
14 |
model_name = "Pendrokar/TorchMoji"
|
15 |
model = AutoModel.from_pretrained(model_name)
|
16 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
+
model_path = './' + model_name + "/pytorch_model.bin"
|
18 |
vocab_path = './' + model_name + "/vocabulary.json"
|
19 |
|
20 |
def top_elements(array, k):
|
|
|
23 |
|
24 |
maxlen = 30
|
25 |
|
|
|
|
|
|
|
|
|
26 |
st = SentenceTokenizer(tokenizer.get_added_vocab(), maxlen)
|
27 |
|
|
|
28 |
model = torchmoji_emojis(model_path)
|
|
|
|
|
|
|
|
|
29 |
|
30 |
def predict(deepmoji_analysis):
|
31 |
output_text = "\n"
|
|
|
32 |
tokenized, _, _ = st.tokenize_sentences(TEST_SENTENCES)
|
33 |
prob = model(tokenized)
|
34 |
|