DeepMoji / app.py
Pendrokar's picture
back to model clone; uberduck's config is old
84c02ea
raw
history blame
2.16 kB
from __future__ import print_function, division, unicode_literals
import gradio as gr
import sys
from os.path import abspath, dirname
import json
import numpy as np
from torchmoji.sentence_tokenizer import SentenceTokenizer
from torchmoji.model_def import torchmoji_emojis
from transformers import AutoModel
model_name = "Pendrokar/TorchMoji"
model = AutoModel.from_pretrained(model_name)
model_path = model
vocab_path = './' + model_name + "/vocabulary.json"
def top_elements(array, k):
ind = np.argpartition(array, -k)[-k:]
return ind[np.argsort(array[ind])][::-1]
maxlen = 30
print('Tokenizing using dictionary from {}'.format(vocab_path))
with open(vocab_path, 'r') as f:
vocabulary = json.load(f)
st = SentenceTokenizer(vocabulary, maxlen)
print('Loading model from {}.'.format(model_path))
model = torchmoji_emojis(model_path)
print(model)
def doImportableFunction():
return
def predict(deepmoji_analysis):
output_text = "\n"
print('Running predictions.')
tokenized, _, _ = st.tokenize_sentences(TEST_SENTENCES)
prob = model(tokenized)
for prob in [prob]:
# Find top emojis for each sentence. Emoji ids (0-63)
# correspond to the mapping in emoji_overview.png
# at the root of the torchMoji repo.
scores = []
for i, t in enumerate(TEST_SENTENCES):
t_tokens = tokenized[i]
t_score = [t]
t_prob = prob[i]
ind_top = top_elements(t_prob, 5)
t_score.append(sum(t_prob[ind_top]))
t_score.extend(ind_top)
t_score.extend([t_prob[ind] for ind in ind_top])
scores.append(t_score)
output_text += t_score
return str(tokenized) + output_text
gradio_app = gr.Interface(
fn=predict,
inputs="text",
outputs="text",
examples=[
"You love hurting me, huh?",
"I know good movies, this ain't one",
"It was fun, but I'm not going to miss you",
"My flight is delayed.. amazing.",
"What is happening to me??",
"This is the shit!",
"This is shit!",
]
)
if __name__ == "__main__":
gradio_app.launch()