File size: 2,251 Bytes
df3b007
 
ebb2014
 
df3b007
 
11c4f8e
df3b007
 
0fd5020
df3b007
 
6755c50
 
 
84c02ea
6755c50
 
df3b007
 
 
 
 
 
 
6755c50
 
 
 
d264d99
20106f5
df3b007
 
809daf0
0a214bf
404d045
df3b007
 
 
 
 
 
 
404d045
df3b007
 
 
809daf0
df3b007
 
 
 
24deab8
df3b007
 
ebb2014
8e4d744
809daf0
 
 
 
 
0a214bf
8e4d744
87b3c09
 
 
 
 
 
 
8e4d744
 
ebb2014
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from __future__ import print_function, division, unicode_literals

import gradio as gr

import sys
from os.path import abspath, dirname

import json
import numpy as np

from torchmoji.sentence_tokenizer import SentenceTokenizer
from torchmoji.model_def import torchmoji_emojis

from huggingface_hub import hf_hub_download

model_name = "Pendrokar/TorchMoji"
model_path = hf_hub_download(repo_id=model_name, filename="pytorch_model.bin")
vocab_path = hf_hub_download(repo_id=model_name, filename="vocabulary.json")

def top_elements(array, k):
    ind = np.argpartition(array, -k)[-k:]
    return ind[np.argsort(array[ind])][::-1]

maxlen = 30

print('Tokenizing using dictionary from {}'.format(vocab_path))
with open(vocab_path, 'r') as f:
    vocabulary = json.load(f)

st = SentenceTokenizer(vocabulary, maxlen)

model = torchmoji_emojis(model_path)

def predict(deepmoji_analysis, emoji_count):
    output_text = "\n"
    tokenized, _, _ = st.tokenize_sentences([deepmoji_analysis])
    prob = model(tokenized)

    for prob in [prob]:
        # Find top emojis for each sentence. Emoji ids (0-63)
        # correspond to the mapping in emoji_overview.png
        # at the root of the torchMoji repo.
        scores = []
        for i, t in enumerate([deepmoji_analysis]):
            t_tokens = tokenized[i]
            t_score = [t]
            t_prob = prob[i]
            ind_top = top_elements(t_prob, emoji_count)
            t_score.append(sum(t_prob[ind_top]))
            t_score.extend(ind_top)
            t_score.extend([t_prob[ind] for ind in ind_top])
            scores.append(t_score)
            output_text += str(t_score)

    return str(tokenized) + output_text

gradio_app = gr.Interface(
    predict,
    [
        "text",
        gr.Slider(1, 64, value=5, step=1, label="Top # Emoji", info="Choose between 1 and 64"),
    ],
    outputs="text",
    examples=[
        ["You love hurting me, huh?", 5],
        ["I know good movies, this ain't one", 5],
        ["It was fun, but I'm not going to miss you", 5],
        ["My flight is delayed.. amazing.", 5],
        ["What is happening to me??", 5],
        ["This is the shit!", 5],
        ["This is shit!", 5],
    ]
)

if __name__ == "__main__":
    gradio_app.launch()