Spaces:
Running
Running
File size: 2,251 Bytes
df3b007 ebb2014 df3b007 11c4f8e df3b007 0fd5020 df3b007 6755c50 84c02ea 6755c50 df3b007 6755c50 d264d99 20106f5 df3b007 809daf0 0a214bf 404d045 df3b007 404d045 df3b007 809daf0 df3b007 24deab8 df3b007 ebb2014 8e4d744 809daf0 0a214bf 8e4d744 87b3c09 8e4d744 ebb2014 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
from __future__ import print_function, division, unicode_literals
import gradio as gr
import sys
from os.path import abspath, dirname
import json
import numpy as np
from torchmoji.sentence_tokenizer import SentenceTokenizer
from torchmoji.model_def import torchmoji_emojis
from huggingface_hub import hf_hub_download
model_name = "Pendrokar/TorchMoji"
model_path = hf_hub_download(repo_id=model_name, filename="pytorch_model.bin")
vocab_path = hf_hub_download(repo_id=model_name, filename="vocabulary.json")
def top_elements(array, k):
ind = np.argpartition(array, -k)[-k:]
return ind[np.argsort(array[ind])][::-1]
maxlen = 30
print('Tokenizing using dictionary from {}'.format(vocab_path))
with open(vocab_path, 'r') as f:
vocabulary = json.load(f)
st = SentenceTokenizer(vocabulary, maxlen)
model = torchmoji_emojis(model_path)
def predict(deepmoji_analysis, emoji_count):
output_text = "\n"
tokenized, _, _ = st.tokenize_sentences([deepmoji_analysis])
prob = model(tokenized)
for prob in [prob]:
# Find top emojis for each sentence. Emoji ids (0-63)
# correspond to the mapping in emoji_overview.png
# at the root of the torchMoji repo.
scores = []
for i, t in enumerate([deepmoji_analysis]):
t_tokens = tokenized[i]
t_score = [t]
t_prob = prob[i]
ind_top = top_elements(t_prob, emoji_count)
t_score.append(sum(t_prob[ind_top]))
t_score.extend(ind_top)
t_score.extend([t_prob[ind] for ind in ind_top])
scores.append(t_score)
output_text += str(t_score)
return str(tokenized) + output_text
gradio_app = gr.Interface(
predict,
[
"text",
gr.Slider(1, 64, value=5, step=1, label="Top # Emoji", info="Choose between 1 and 64"),
],
outputs="text",
examples=[
["You love hurting me, huh?", 5],
["I know good movies, this ain't one", 5],
["It was fun, but I'm not going to miss you", 5],
["My flight is delayed.. amazing.", 5],
["What is happening to me??", 5],
["This is the shit!", 5],
["This is shit!", 5],
]
)
if __name__ == "__main__":
gradio_app.launch() |