import gradio as gr import pdfplumber import openai import re import unicodedata import os # Set up OpenAI API Key (Replace with your actual key) openai.api_key = "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" def clean_text(text): """Cleans extracted text for better processing by the model.""" text = unicodedata.normalize("NFKC", text) # Normalize Unicode characters text = re.sub(r'\s+', ' ', text).strip() # Remove extra spaces and newlines text = re.sub(r'[^a-zA-Z0-9.,!?;:\'\"()\-]', ' ', text) # Keep basic punctuation text = re.sub(r'(?i)(page\s*\d+)', '', text) # Remove page numbers return text def extract_text_from_pdf(pdf_file): """Extract and clean text from the uploaded PDF.""" try: with pdfplumber.open(pdf_file) as pdf: text = " ".join(clean_text(text) for page in pdf.pages if (text := page.extract_text())) return text except Exception as e: print(f"Error extracting text: {e}") return None def split_text(text, chunk_size=500): """Splits text into smaller chunks for faster processing.""" chunks = [] for i in range(0, len(text), chunk_size): chunks.append(text[i:i+chunk_size]) return chunks def chatbot(pdf_file, user_question): """Processes the PDF and answers the user's question.""" # Step 1: Extract text from the PDF text = extract_text_from_pdf(pdf_file) # Step 2: Split into chunks chunks = split_text(text) # Step 3: Use only the first chunk for now (to reduce token usage) if not chunks: return "Could not extract any text from the PDF." prompt = f"Based on this document, answer the question:\n\nDocument:\n{chunks[0]}\n\nQuestion: {user_question}" # Step 4: Send to OpenAI's GPT-3.5 response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": prompt}] ) # Step 5: Return the chatbot's response return response["choices"][0]["message"]["content"] # Gradio Interface iface = gr.Interface( fn=chatbot, inputs=[gr.File(label="Upload PDF"), gr.Textbox(label="Ask a Question")], outputs=gr.Textbox(label="Answer"), title="PDF Q&A Chatbot" ) # Launch Gradio app iface.launch()