Spaces:
Build error
Build error
| import gradio as gr | |
| import pdfplumber | |
| import openai | |
| import re | |
| import unicodedata | |
| import os | |
| # Set up OpenAI API Key (Replace with your actual key) | |
| openai.api_key = "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" | |
| def clean_text(text): | |
| """Cleans extracted text for better processing by the model.""" | |
| text = unicodedata.normalize("NFKC", text) # Normalize Unicode characters | |
| text = re.sub(r'\s+', ' ', text).strip() # Remove extra spaces and newlines | |
| text = re.sub(r'[^a-zA-Z0-9.,!?;:\'\"()\-]', ' ', text) # Keep basic punctuation | |
| text = re.sub(r'(?i)(page\s*\d+)', '', text) # Remove page numbers | |
| return text | |
| def extract_text_from_pdf(pdf_file): | |
| """Extract and clean text from the uploaded PDF.""" | |
| try: | |
| with pdfplumber.open(pdf_file) as pdf: | |
| text = " ".join(clean_text(text) for page in pdf.pages if (text := page.extract_text())) | |
| return text | |
| except Exception as e: | |
| print(f"Error extracting text: {e}") | |
| return None | |
| def split_text(text, chunk_size=500): | |
| """Splits text into smaller chunks for faster processing.""" | |
| chunks = [] | |
| for i in range(0, len(text), chunk_size): | |
| chunks.append(text[i:i+chunk_size]) | |
| return chunks | |
| def chatbot(pdf_file, user_question): | |
| """Processes the PDF and answers the user's question.""" | |
| # Step 1: Extract text from the PDF | |
| text = extract_text_from_pdf(pdf_file) | |
| # Step 2: Split into chunks | |
| chunks = split_text(text) | |
| # Step 3: Use only the first chunk for now (to reduce token usage) | |
| if not chunks: | |
| return "Could not extract any text from the PDF." | |
| prompt = f"Based on this document, answer the question:\n\nDocument:\n{chunks[0]}\n\nQuestion: {user_question}" | |
| # Step 4: Send to OpenAI's GPT-3.5 | |
| response = openai.ChatCompletion.create( | |
| model="gpt-4o-mini", | |
| messages=[{"role": "user", "content": prompt}] | |
| ) | |
| # Step 5: Return the chatbot's response | |
| return response["choices"][0]["message"]["content"] | |
| # Gradio Interface | |
| iface = gr.Interface( | |
| fn=chatbot, | |
| inputs=[gr.File(label="Upload PDF"), gr.Textbox(label="Ask a Question")], | |
| outputs=gr.Textbox(label="Answer"), | |
| title="PDF Q&A Chatbot" | |
| ) | |
| # Launch Gradio app | |
| iface.launch() | |