pdf-something / app.py
Penality's picture
Update app.py
5f6bee3 verified
raw
history blame
2.39 kB
import gradio as gr
import pdfplumber
import openai
import re
import unicodedata
import os
# Set up OpenAI API Key (Replace with your actual key)
openai.api_key = "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"
def clean_text(text):
"""Cleans extracted text for better processing by the model."""
text = unicodedata.normalize("NFKC", text) # Normalize Unicode characters
text = re.sub(r'\s+', ' ', text).strip() # Remove extra spaces and newlines
text = re.sub(r'[^a-zA-Z0-9.,!?;:\'\"()\-]', ' ', text) # Keep basic punctuation
text = re.sub(r'(?i)(page\s*\d+)', '', text) # Remove page numbers
return text
def extract_text_from_pdf(pdf_file):
"""Extract and clean text from the uploaded PDF."""
try:
with pdfplumber.open(pdf_file) as pdf:
text = " ".join(clean_text(text) for page in pdf.pages if (text := page.extract_text()))
return text
except Exception as e:
print(f"Error extracting text: {e}")
return None
def split_text(text, chunk_size=500):
"""Splits text into smaller chunks for faster processing."""
chunks = []
for i in range(0, len(text), chunk_size):
chunks.append(text[i:i+chunk_size])
return chunks
def chatbot(pdf_file, user_question):
"""Processes the PDF and answers the user's question."""
# Step 1: Extract text from the PDF
text = extract_text_from_pdf(pdf_file)
# Step 2: Split into chunks
chunks = split_text(text)
# Step 3: Use only the first chunk for now (to reduce token usage)
if not chunks:
return "Could not extract any text from the PDF."
prompt = f"Based on this document, answer the question:\n\nDocument:\n{chunks[0]}\n\nQuestion: {user_question}"
# Step 4: Send to OpenAI's GPT-3.5
response = openai.ChatCompletion.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": prompt}]
)
# Step 5: Return the chatbot's response
return response["choices"][0]["message"]["content"]
# Gradio Interface
iface = gr.Interface(
fn=chatbot,
inputs=[gr.File(label="Upload PDF"), gr.Textbox(label="Ask a Question")],
outputs=gr.Textbox(label="Answer"),
title="PDF Q&A Chatbot"
)
# Launch Gradio app
iface.launch()