pdf-something / app.py
Penality's picture
Update app.py
42ada2f verified
raw
history blame
3.93 kB
import gradio as gr
import os
import pdfplumber
import together
from transformers import pipeline
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import huggingface_hub as login
import re
import unicodedata
from dotenv import load_dotenv
load_dotenv()
# Set up Together.AI API Key (Replace with your actual key)
assert os.getenv("TOGETHER_API_KEY"), "api key missing"
# Retrieve the API token from secrets
api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
if api_token:
login(api_token) # Authenticate with Hugging Face
# Load LLaMA-2 Model
llama_pipe = pipeline("text-generation", model="meta-llama/Llama-2-7b-chat-hf")
# Load Sentence Transformer for embeddings
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
# Initialize FAISS index
embedding_dim = 384 # For MiniLM model
index = faiss.IndexFlatL2(embedding_dim)
documents = [] # Store raw text for reference
def store_document(text):
print("storing document")
embedding = embedding_model.encode([text])
index.add(np.array(embedding, dtype=np.float32))
documents.append(text)
print(f"your document has been stored: \n{documents}")
return "Document stored!"
def retrieve_document(query):
print(f"retrieving doc based on {query}")
query_embedding = embedding_model.encode([query])
_, closest_idx = index.search(np.array(query_embedding, dtype=np.float32), 1)
print(f"retrieved: {documents[closest_idx[0][0]]}")
return documents[closest_idx[0][0]]
def clean_text(text):
"""Cleans extracted text for better processing by the model."""
print("cleaning")
text = unicodedata.normalize("NFKC", text) # Normalize Unicode characters
text = re.sub(r'\s+', ' ', text).strip() # Remove extra spaces and newlines
text = re.sub(r'[^a-zA-Z0-9.,!?;:\'\"()\-]', ' ', text) # Keep basic punctuation
text = re.sub(r'(?i)(page\s*\d+)', '', text) # Remove page numbers
return text
def extract_text_from_pdf(pdf_file):
"""Extract and clean text from the uploaded PDF."""
print("extracting")
try:
with pdfplumber.open(pdf_file) as pdf:
text = " ".join(clean_text(text) for page in pdf.pages if (text := page.extract_text()))
store_document(text)
return text
except Exception as e:
print(f"Error extracting text: {e}")
return None
def split_text(text, chunk_size=500):
"""Splits text into smaller chunks for better processing."""
print("splitting")
return [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)]
def chatbot(pdf_file, user_question):
"""Processes the PDF and answers the user's question."""
print("chatbot start")
# Extract text from the PDF
text = extract_text_from_pdf(pdf_file)
if not text:
return "Could not extract any text from the PDF."
# retrieve the document relevant to the query
doc = retrieve_document(user_question)
# Split into smaller chunks
chunks = split_text(doc)
# Use only the first chunk (to optimize token usage)
prompt = f"Based on this document, answer the question:\n\nDocument:\n{chunks[0]}\n\nQuestion: {user_question}"
try:
response = together.Completion.create(
model="mistralai/Mistral-7B-Instruct-v0.1",
prompt=prompt,
max_tokens=200,
temperature=0.7,
)
# Return chatbot's response
return response.choices[0].text
except Exception as e:
return f"Error generating response: {e}"
# Send to Together.AI (Mistral-7B)
# Gradio Interface
iface = gr.Interface(
fn=chatbot,
inputs=[gr.File(label="Upload PDF"), gr.Textbox(label="Ask a Question")],
outputs=gr.Textbox(label="Answer"),
title="PDF Q&A Chatbot (Powered by Together.AI)"
)
# Launch Gradio app
iface.launch()