Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -14,7 +14,6 @@ from gradio_imageslider import ImageSlider
|
|
14 |
|
15 |
translator = Translator()
|
16 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
17 |
-
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
19 |
CSS = "footer { visibility: hidden; }"
|
20 |
JS = "function () { gradioURL = window.location.href; if (!gradioURL.endsWith('?__theme=dark')) { window.location.replace(gradioURL + '?__theme=dark'); } }"
|
@@ -31,49 +30,21 @@ async def generate_image(prompt, model, lora_word, width, height, scales, steps,
|
|
31 |
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
|
32 |
return image, seed
|
33 |
|
34 |
-
def
|
35 |
-
|
36 |
-
result = client.predict(
|
37 |
-
img_path,
|
38 |
-
prompt,
|
39 |
-
"",
|
40 |
-
upscale_factor,
|
41 |
-
1,
|
42 |
-
3,
|
43 |
-
3,
|
44 |
-
"16",
|
45 |
-
"16",
|
46 |
-
"epicrealism_naturalSinRC1VAE.safetensors [84d76a0328]",
|
47 |
-
"DPM++ 2M Karras",
|
48 |
-
1,
|
49 |
-
3,
|
50 |
-
True,
|
51 |
-
3,
|
52 |
-
"Hello!!",
|
53 |
-
"Hello!!",
|
54 |
-
api_name="/predict"
|
55 |
-
)
|
56 |
-
print(result)
|
57 |
-
return result
|
58 |
-
|
59 |
-
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora, upscaler_choice):
|
60 |
-
model = lora_model
|
61 |
image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
|
62 |
image_path = "temp_image.png"
|
63 |
image.save(image_path)
|
64 |
|
65 |
if process_upscale:
|
66 |
-
|
67 |
-
upscale_image = get_upscale_finegrain(prompt, image_path, upscale_factor)
|
68 |
-
elif upscaler_choice == "Upscaler Clarity":
|
69 |
-
upscale_image = get_clarity_upscale(prompt, image_path, upscale_factor)
|
70 |
else:
|
71 |
upscale_image = image_path
|
72 |
|
73 |
return [image_path, upscale_image]
|
74 |
|
75 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
76 |
-
client = Client("finegrain/finegrain-image-enhancer", hf_token=
|
77 |
result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
|
78 |
return result[1]
|
79 |
|
@@ -94,10 +65,9 @@ with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
|
|
94 |
prompt = gr.Textbox(label="Prompt")
|
95 |
basemodel_choice = gr.Dropdown(label="Base Model", choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV"], value="black-forest-labs/FLUX.1-schnell")
|
96 |
lora_model_choice = gr.Dropdown(label="LORA Model", choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora"], value="XLabs-AI/flux-RealismLora")
|
97 |
-
process_lora = gr.Checkbox(label="Process LORA"
|
98 |
-
process_upscale = gr.Checkbox(label="Process Upscale"
|
99 |
-
upscale_factor = gr.Radio(label="UpScale Factor", choices=[2, 4, 8], value=2
|
100 |
-
upscaler_choice = gr.Radio(label="Upscaler", choices=["FineGrain", "Upscaler Clarity"], value="FineGrain")
|
101 |
|
102 |
with gr.Accordion(label="Advanced Options", open=False):
|
103 |
width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=512)
|
@@ -114,7 +84,7 @@ with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
|
|
114 |
queue=False
|
115 |
).then(
|
116 |
fn=gen,
|
117 |
-
inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora
|
118 |
outputs=[output_res]
|
119 |
)
|
120 |
demo.launch()
|
|
|
14 |
|
15 |
translator = Translator()
|
16 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
|
17 |
MAX_SEED = np.iinfo(np.int32).max
|
18 |
CSS = "footer { visibility: hidden; }"
|
19 |
JS = "function () { gradioURL = window.location.href; if (!gradioURL.endsWith('?__theme=dark')) { window.location.replace(gradioURL + '?__theme=dark'); } }"
|
|
|
30 |
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
|
31 |
return image, seed
|
32 |
|
33 |
+
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
|
34 |
+
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
|
36 |
image_path = "temp_image.png"
|
37 |
image.save(image_path)
|
38 |
|
39 |
if process_upscale:
|
40 |
+
upscale_image = get_upscale_finegrain(prompt, image_path, upscale_factor)
|
|
|
|
|
|
|
41 |
else:
|
42 |
upscale_image = image_path
|
43 |
|
44 |
return [image_path, upscale_image]
|
45 |
|
46 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
47 |
+
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN)
|
48 |
result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
|
49 |
return result[1]
|
50 |
|
|
|
65 |
prompt = gr.Textbox(label="Prompt")
|
66 |
basemodel_choice = gr.Dropdown(label="Base Model", choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV"], value="black-forest-labs/FLUX.1-schnell")
|
67 |
lora_model_choice = gr.Dropdown(label="LORA Model", choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora"], value="XLabs-AI/flux-RealismLora")
|
68 |
+
process_lora = gr.Checkbox(label="Process LORA")
|
69 |
+
process_upscale = gr.Checkbox(label="Process Upscale")
|
70 |
+
upscale_factor = gr.Radio(label="UpScale Factor", choices=[2, 4, 8], value=2)
|
|
|
71 |
|
72 |
with gr.Accordion(label="Advanced Options", open=False):
|
73 |
width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=512)
|
|
|
84 |
queue=False
|
85 |
).then(
|
86 |
fn=gen,
|
87 |
+
inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora],
|
88 |
outputs=[output_res]
|
89 |
)
|
90 |
demo.launch()
|