salomonsky commited on
Commit
0c305b3
verified
1 Parent(s): 7809429

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -11
app.py CHANGED
@@ -12,19 +12,14 @@ from gradio_client import Client, handle_file
12
  from huggingface_hub import login
13
  from gradio_imageslider import ImageSlider
14
 
15
-
16
  MAX_SEED = np.iinfo(np.int32).max
17
  HF_TOKEN = os.environ.get("HF_TOKEN")
18
  HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
19
 
20
-
21
  def enable_lora(lora_add, basemodel):
22
- """Habilita o deshabilita LoRA seg煤n la opci贸n seleccionada"""
23
  return basemodel if not lora_add else lora_add
24
 
25
-
26
  async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
27
- """Genera una imagen utilizando el modelo seleccionado"""
28
  try:
29
  if seed == -1:
30
  seed = random.randint(0, MAX_SEED)
@@ -37,9 +32,7 @@ async def generate_image(prompt, model, lora_word, width, height, scales, steps,
37
  print(f"Error generando imagen: {e}")
38
  return None, None
39
 
40
-
41
  def get_upscale_finegrain(prompt, img_path, upscale_factor):
42
- """Escala una imagen utilizando FineGrain"""
43
  try:
44
  client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
45
  result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
@@ -48,9 +41,7 @@ def get_upscale_finegrain(prompt, img_path, upscale_factor):
48
  print(f"Error escalando imagen: {e}")
49
  return None
50
 
51
-
52
  async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
53
- """Funci贸n principal que genera y escala la imagen"""
54
  model = enable_lora(lora_model, basemodel) if process_lora else basemodel
55
  image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
56
  if image is None:
@@ -71,12 +62,10 @@ async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_fac
71
  else:
72
  return [image_path, image_path]
73
 
74
-
75
  css = """
76
  #col-container{ margin: 0 auto; max-width: 1024px;}
77
  """
78
 
79
-
80
  with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
81
  with gr.Column(elem_id="col-container"):
82
  with gr.Row():
 
12
  from huggingface_hub import login
13
  from gradio_imageslider import ImageSlider
14
 
 
15
  MAX_SEED = np.iinfo(np.int32).max
16
  HF_TOKEN = os.environ.get("HF_TOKEN")
17
  HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
18
 
 
19
  def enable_lora(lora_add, basemodel):
 
20
  return basemodel if not lora_add else lora_add
21
 
 
22
  async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
 
23
  try:
24
  if seed == -1:
25
  seed = random.randint(0, MAX_SEED)
 
32
  print(f"Error generando imagen: {e}")
33
  return None, None
34
 
 
35
  def get_upscale_finegrain(prompt, img_path, upscale_factor):
 
36
  try:
37
  client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
38
  result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
 
41
  print(f"Error escalando imagen: {e}")
42
  return None
43
 
 
44
  async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
 
45
  model = enable_lora(lora_model, basemodel) if process_lora else basemodel
46
  image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
47
  if image is None:
 
62
  else:
63
  return [image_path, image_path]
64
 
 
65
  css = """
66
  #col-container{ margin: 0 auto; max-width: 1024px;}
67
  """
68
 
 
69
  with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
70
  with gr.Column(elem_id="col-container"):
71
  with gr.Row():