Commit
·
dddb041
1
Parent(s):
27063b6
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import requests
|
| 3 |
+
import io
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import json
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
# Load LoRAs from JSON
|
| 9 |
+
with open('loras.json', 'r') as f:
|
| 10 |
+
loras = json.load(f)
|
| 11 |
+
|
| 12 |
+
# API call function
|
| 13 |
+
def query(payload, api_url, token):
|
| 14 |
+
headers = {"Authorization": f"Bearer {token}"}
|
| 15 |
+
response = requests.post(api_url, headers=headers, json=payload)
|
| 16 |
+
return io.BytesIO(response.content)
|
| 17 |
+
|
| 18 |
+
# Gradio UI
|
| 19 |
+
with gr.Blocks(css="custom.css") as demo:
|
| 20 |
+
title = gr.HTML(
|
| 21 |
+
"""<h1><img src="https://i.imgur.com/vT48NAO.png" alt="LoRA"> LoRA the Explorer</h1>""",
|
| 22 |
+
elem_id="title",
|
| 23 |
+
)
|
| 24 |
+
selected_state = gr.State()
|
| 25 |
+
gallery = gr.Gallery(
|
| 26 |
+
value=[(item["image"], item["title"]) for item in loras],
|
| 27 |
+
label="LoRA Gallery",
|
| 28 |
+
allow_preview=False,
|
| 29 |
+
columns=3,
|
| 30 |
+
elem_id="gallery",
|
| 31 |
+
show_share_button=False
|
| 32 |
+
)
|
| 33 |
+
prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, placeholder="Type a prompt after selecting a LoRA", elem_id="prompt")
|
| 34 |
+
advanced_options = gr.Accordion("Advanced options", open=False)
|
| 35 |
+
weight = gr.Slider(0, 10, value=1, step=0.1, label="LoRA weight")
|
| 36 |
+
result = gr.Image(interactive=False, label="Generated Image", elem_id="result-image")
|
| 37 |
+
|
| 38 |
+
# Define the function to run when the button is clicked
|
| 39 |
+
def run_lora(prompt, weight, selected_state):
|
| 40 |
+
selected_lora = loras[selected_state]
|
| 41 |
+
api_url = f"https://api-inference.huggingface.co/models/{selected_lora['repo']}"
|
| 42 |
+
trigger_word = selected_lora["trigger_word"]
|
| 43 |
+
token = os.getenv("API_TOKEN")
|
| 44 |
+
payload = {"inputs": f"{prompt} {trigger_word}"}
|
| 45 |
+
|
| 46 |
+
image_bytes = query(payload, api_url, token)
|
| 47 |
+
return Image.open(image_bytes)
|
| 48 |
+
|
| 49 |
+
prompt.submit(
|
| 50 |
+
fn=run_lora,
|
| 51 |
+
inputs=[prompt, weight, selected_state],
|
| 52 |
+
outputs=[result],
|
| 53 |
+
)
|