Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,86 +2,78 @@ import cv2
|
|
2 |
import numpy as np
|
3 |
import scipy as sp
|
4 |
import scipy.sparse.linalg
|
5 |
-
from numba import
|
6 |
import gradio as gr
|
7 |
|
8 |
-
@
|
9 |
-
def neighbours(
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
17 |
|
18 |
-
@
|
19 |
-
def
|
|
|
|
|
|
|
20 |
im2var = np.arange(img_h * img_w).reshape(img_h, img_w)
|
21 |
-
A_data = []
|
22 |
-
A_row = []
|
23 |
-
A_col = []
|
24 |
-
b = np.zeros(img_h*img_w*5)
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
A_row.append(e)
|
31 |
-
A_col.append(im2var[y, x])
|
32 |
-
e += 1
|
33 |
-
|
34 |
-
for n_y, n_x in neighbours(y, x, img_h-1, img_w-1):
|
35 |
-
A_data.append(1)
|
36 |
-
A_row.append(e)
|
37 |
-
A_col.append(im2var[y, x])
|
38 |
-
|
39 |
-
A_data.append(-1)
|
40 |
-
A_row.append(e)
|
41 |
-
A_col.append(im2var[n_y, n_x])
|
42 |
-
|
43 |
-
e += 1
|
44 |
|
45 |
-
return A_data, A_row, A_col, b,
|
46 |
|
47 |
-
@
|
48 |
-
def
|
49 |
e = 0
|
50 |
for y in prange(img_h):
|
51 |
for x in range(img_w):
|
52 |
-
|
|
|
|
|
|
|
53 |
e += 1
|
54 |
|
55 |
for n_y, n_x in neighbours(y, x, img_h-1, img_w-1):
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
e += 1
|
58 |
-
|
59 |
-
def poisson_sharpening(img: np.ndarray, alpha: float) -> np.ndarray:
|
60 |
-
"""
|
61 |
-
Returns a sharpened image with strength of alpha.
|
62 |
-
:param img: the image
|
63 |
-
:param alpha: edge threshold and gradient scaler
|
64 |
-
"""
|
65 |
-
img_h, img_w = img.shape[:2]
|
66 |
-
|
67 |
-
A_data, A_row, A_col, b, e = build_poisson_matrix(img_h, img_w, alpha)
|
68 |
-
fill_b_vector(b, img, alpha, img_h, img_w)
|
69 |
|
70 |
-
A = sp.sparse.csr_matrix((A_data, (A_row, A_col)), shape=(e, img_h*img_w))
|
71 |
v = sp.sparse.linalg.lsqr(A, b[:e])[0]
|
72 |
|
73 |
return np.clip(v.reshape(img_h, img_w), 0, 1)
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
def get_image(img):
|
76 |
return cv2.cvtColor(img, cv2.COLOR_BGR2RGB).astype('float32') / 255.0
|
77 |
|
78 |
def sharpen_image(input_img, alpha):
|
79 |
img = get_image(input_img)
|
80 |
-
|
81 |
-
sharpen_img = np.zeros(img.shape)
|
82 |
-
for b in range(3):
|
83 |
-
sharpen_img[:,:,b] = poisson_sharpening(img[:,:,b], alpha)
|
84 |
-
|
85 |
return (sharpen_img * 255).astype(np.uint8)
|
86 |
|
87 |
# Create examples list
|
|
|
2 |
import numpy as np
|
3 |
import scipy as sp
|
4 |
import scipy.sparse.linalg
|
5 |
+
from numba import njit, prange
|
6 |
import gradio as gr
|
7 |
|
8 |
+
@njit
|
9 |
+
def neighbours(y, x, max_y, max_x):
|
10 |
+
neighbors = []
|
11 |
+
if y > 0:
|
12 |
+
neighbors.append((y-1, x))
|
13 |
+
if y < max_y:
|
14 |
+
neighbors.append((y+1, x))
|
15 |
+
if x > 0:
|
16 |
+
neighbors.append((y, x-1))
|
17 |
+
if x < max_x:
|
18 |
+
neighbors.append((y, x+1))
|
19 |
+
return neighbors
|
20 |
|
21 |
+
@njit
|
22 |
+
def poisson_sharpening(img, alpha):
|
23 |
+
img_h, img_w = img.shape
|
24 |
+
img_s = img.copy()
|
25 |
+
|
26 |
im2var = np.arange(img_h * img_w).reshape(img_h, img_w)
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
A_data = np.zeros(img_h * img_w * 5, dtype=np.float64)
|
29 |
+
A_row = np.zeros(img_h * img_w * 5, dtype=np.int32)
|
30 |
+
A_col = np.zeros(img_h * img_w * 5, dtype=np.int32)
|
31 |
+
b = np.zeros(img_h * img_w * 5, dtype=np.float64)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
return _poisson_sharpening_inner(img_s, alpha, im2var, A_data, A_row, A_col, b, img_h, img_w)
|
34 |
|
35 |
+
@njit(parallel=True)
|
36 |
+
def _poisson_sharpening_inner(img_s, alpha, im2var, A_data, A_row, A_col, b, img_h, img_w):
|
37 |
e = 0
|
38 |
for y in prange(img_h):
|
39 |
for x in range(img_w):
|
40 |
+
A_data[e] = 1
|
41 |
+
A_row[e] = e
|
42 |
+
A_col[e] = im2var[y, x]
|
43 |
+
b[e] = img_s[y, x]
|
44 |
e += 1
|
45 |
|
46 |
for n_y, n_x in neighbours(y, x, img_h-1, img_w-1):
|
47 |
+
A_data[e] = 1
|
48 |
+
A_row[e] = e
|
49 |
+
A_col[e] = im2var[y, x]
|
50 |
+
e += 1
|
51 |
+
|
52 |
+
A_data[e] = -1
|
53 |
+
A_row[e] = e - 1
|
54 |
+
A_col[e] = im2var[n_y, n_x]
|
55 |
+
|
56 |
+
b[e-1] = alpha * (img_s[y, x] - img_s[n_y, n_x])
|
57 |
e += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
A = sp.sparse.csr_matrix((A_data[:e], (A_row[:e], A_col[:e])), shape=(e, img_h * img_w))
|
60 |
v = sp.sparse.linalg.lsqr(A, b[:e])[0]
|
61 |
|
62 |
return np.clip(v.reshape(img_h, img_w), 0, 1)
|
63 |
|
64 |
+
@njit(parallel=True)
|
65 |
+
def sharpen_image_channels(img, alpha):
|
66 |
+
sharpen_img = np.zeros_like(img)
|
67 |
+
for b in prange(3):
|
68 |
+
sharpen_img[:,:,b] = poisson_sharpening(img[:,:,b], alpha)
|
69 |
+
return sharpen_img
|
70 |
+
|
71 |
def get_image(img):
|
72 |
return cv2.cvtColor(img, cv2.COLOR_BGR2RGB).astype('float32') / 255.0
|
73 |
|
74 |
def sharpen_image(input_img, alpha):
|
75 |
img = get_image(input_img)
|
76 |
+
sharpen_img = sharpen_image_channels(img, alpha)
|
|
|
|
|
|
|
|
|
77 |
return (sharpen_img * 255).astype(np.uint8)
|
78 |
|
79 |
# Create examples list
|