gokaygokay commited on
Commit
6ebce6b
·
verified ·
1 Parent(s): 0f5237c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -56
app.py CHANGED
@@ -2,86 +2,78 @@ import cv2
2
  import numpy as np
3
  import scipy as sp
4
  import scipy.sparse.linalg
5
- from numba import jit, prange
6
  import gradio as gr
7
 
8
- @jit(nopython=True)
9
- def neighbours(i, j, max_i, max_j):
10
- pairs = []
11
- for n in [-1, 1]:
12
- if 0 <= i+n <= max_i:
13
- pairs.append((i+n, j))
14
- if 0 <= j+n <= max_j:
15
- pairs.append((i, j+n))
16
- return pairs
 
 
 
17
 
18
- @jit(nopython=True)
19
- def build_poisson_matrix(img_h, img_w, alpha):
 
 
 
20
  im2var = np.arange(img_h * img_w).reshape(img_h, img_w)
21
- A_data = []
22
- A_row = []
23
- A_col = []
24
- b = np.zeros(img_h*img_w*5)
25
 
26
- e = 0
27
- for y in range(img_h):
28
- for x in range(img_w):
29
- A_data.append(1)
30
- A_row.append(e)
31
- A_col.append(im2var[y, x])
32
- e += 1
33
-
34
- for n_y, n_x in neighbours(y, x, img_h-1, img_w-1):
35
- A_data.append(1)
36
- A_row.append(e)
37
- A_col.append(im2var[y, x])
38
-
39
- A_data.append(-1)
40
- A_row.append(e)
41
- A_col.append(im2var[n_y, n_x])
42
-
43
- e += 1
44
 
45
- return A_data, A_row, A_col, b, e
46
 
47
- @jit(nopython=True, parallel=True)
48
- def fill_b_vector(b, img, alpha, img_h, img_w):
49
  e = 0
50
  for y in prange(img_h):
51
  for x in range(img_w):
52
- b[e] = img[y, x]
 
 
 
53
  e += 1
54
 
55
  for n_y, n_x in neighbours(y, x, img_h-1, img_w-1):
56
- b[e] = alpha * (img[y, x] - img[n_y, n_x])
 
 
 
 
 
 
 
 
 
57
  e += 1
58
-
59
- def poisson_sharpening(img: np.ndarray, alpha: float) -> np.ndarray:
60
- """
61
- Returns a sharpened image with strength of alpha.
62
- :param img: the image
63
- :param alpha: edge threshold and gradient scaler
64
- """
65
- img_h, img_w = img.shape[:2]
66
-
67
- A_data, A_row, A_col, b, e = build_poisson_matrix(img_h, img_w, alpha)
68
- fill_b_vector(b, img, alpha, img_h, img_w)
69
 
70
- A = sp.sparse.csr_matrix((A_data, (A_row, A_col)), shape=(e, img_h*img_w))
71
  v = sp.sparse.linalg.lsqr(A, b[:e])[0]
72
 
73
  return np.clip(v.reshape(img_h, img_w), 0, 1)
74
 
 
 
 
 
 
 
 
75
  def get_image(img):
76
  return cv2.cvtColor(img, cv2.COLOR_BGR2RGB).astype('float32') / 255.0
77
 
78
  def sharpen_image(input_img, alpha):
79
  img = get_image(input_img)
80
-
81
- sharpen_img = np.zeros(img.shape)
82
- for b in range(3):
83
- sharpen_img[:,:,b] = poisson_sharpening(img[:,:,b], alpha)
84
-
85
  return (sharpen_img * 255).astype(np.uint8)
86
 
87
  # Create examples list
 
2
  import numpy as np
3
  import scipy as sp
4
  import scipy.sparse.linalg
5
+ from numba import njit, prange
6
  import gradio as gr
7
 
8
+ @njit
9
+ def neighbours(y, x, max_y, max_x):
10
+ neighbors = []
11
+ if y > 0:
12
+ neighbors.append((y-1, x))
13
+ if y < max_y:
14
+ neighbors.append((y+1, x))
15
+ if x > 0:
16
+ neighbors.append((y, x-1))
17
+ if x < max_x:
18
+ neighbors.append((y, x+1))
19
+ return neighbors
20
 
21
+ @njit
22
+ def poisson_sharpening(img, alpha):
23
+ img_h, img_w = img.shape
24
+ img_s = img.copy()
25
+
26
  im2var = np.arange(img_h * img_w).reshape(img_h, img_w)
 
 
 
 
27
 
28
+ A_data = np.zeros(img_h * img_w * 5, dtype=np.float64)
29
+ A_row = np.zeros(img_h * img_w * 5, dtype=np.int32)
30
+ A_col = np.zeros(img_h * img_w * 5, dtype=np.int32)
31
+ b = np.zeros(img_h * img_w * 5, dtype=np.float64)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
+ return _poisson_sharpening_inner(img_s, alpha, im2var, A_data, A_row, A_col, b, img_h, img_w)
34
 
35
+ @njit(parallel=True)
36
+ def _poisson_sharpening_inner(img_s, alpha, im2var, A_data, A_row, A_col, b, img_h, img_w):
37
  e = 0
38
  for y in prange(img_h):
39
  for x in range(img_w):
40
+ A_data[e] = 1
41
+ A_row[e] = e
42
+ A_col[e] = im2var[y, x]
43
+ b[e] = img_s[y, x]
44
  e += 1
45
 
46
  for n_y, n_x in neighbours(y, x, img_h-1, img_w-1):
47
+ A_data[e] = 1
48
+ A_row[e] = e
49
+ A_col[e] = im2var[y, x]
50
+ e += 1
51
+
52
+ A_data[e] = -1
53
+ A_row[e] = e - 1
54
+ A_col[e] = im2var[n_y, n_x]
55
+
56
+ b[e-1] = alpha * (img_s[y, x] - img_s[n_y, n_x])
57
  e += 1
 
 
 
 
 
 
 
 
 
 
 
58
 
59
+ A = sp.sparse.csr_matrix((A_data[:e], (A_row[:e], A_col[:e])), shape=(e, img_h * img_w))
60
  v = sp.sparse.linalg.lsqr(A, b[:e])[0]
61
 
62
  return np.clip(v.reshape(img_h, img_w), 0, 1)
63
 
64
+ @njit(parallel=True)
65
+ def sharpen_image_channels(img, alpha):
66
+ sharpen_img = np.zeros_like(img)
67
+ for b in prange(3):
68
+ sharpen_img[:,:,b] = poisson_sharpening(img[:,:,b], alpha)
69
+ return sharpen_img
70
+
71
  def get_image(img):
72
  return cv2.cvtColor(img, cv2.COLOR_BGR2RGB).astype('float32') / 255.0
73
 
74
  def sharpen_image(input_img, alpha):
75
  img = get_image(input_img)
76
+ sharpen_img = sharpen_image_channels(img, alpha)
 
 
 
 
77
  return (sharpen_img * 255).astype(np.uint8)
78
 
79
  # Create examples list