Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import scipy as sp
|
4 |
+
import scipy.sparse.linalg
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
def get_image(img):
|
8 |
+
return cv2.cvtColor(img, cv2.COLOR_BGR2RGB).astype('double') / 255.0
|
9 |
+
|
10 |
+
def neighbours(i, j, max_i, max_j):
|
11 |
+
pairs = []
|
12 |
+
for n in [-1, 1]:
|
13 |
+
if 0 <= i+n <= max_i:
|
14 |
+
pairs.append((i+n, j))
|
15 |
+
if 0 <= j+n <= max_j:
|
16 |
+
pairs.append((i, j+n))
|
17 |
+
return pairs
|
18 |
+
|
19 |
+
def poisson_sharpening(img, alpha):
|
20 |
+
img_h, img_w = img.shape[:2]
|
21 |
+
img_s = img.copy()
|
22 |
+
|
23 |
+
im2var = np.arange(img_h * img_w).reshape(img_h, img_w)
|
24 |
+
|
25 |
+
A = sp.sparse.lil_matrix((img_h*img_w*4*2, img_h*img_w))
|
26 |
+
b = np.zeros(img_h*img_w*4*2)
|
27 |
+
|
28 |
+
e = 0
|
29 |
+
for y in range(img_h):
|
30 |
+
for x in range(img_w):
|
31 |
+
A[e, im2var[y][x]] = 1
|
32 |
+
b[e] = img_s[y][x]
|
33 |
+
e += 1
|
34 |
+
|
35 |
+
for n_y, n_x in neighbours(y, x, img_h-1, img_w-1):
|
36 |
+
A[e, im2var[y][x]] = 1
|
37 |
+
A[e, im2var[n_y][n_x]] = -1
|
38 |
+
|
39 |
+
b[e] = alpha * (img_s[y][x] - img_s[n_y][n_x])
|
40 |
+
e += 1
|
41 |
+
|
42 |
+
A = sp.sparse.csr_matrix(A)
|
43 |
+
v = sp.sparse.linalg.lsqr(A, b)[0]
|
44 |
+
|
45 |
+
return np.clip(v.reshape(img_h, img_w), 0, 1)
|
46 |
+
|
47 |
+
def sharpen_image(input_img, alpha):
|
48 |
+
img = get_image(input_img)
|
49 |
+
|
50 |
+
sharpen_img = np.zeros(img.shape)
|
51 |
+
for b in range(3):
|
52 |
+
sharpen_img[:,:,b] = poisson_sharpening(img[:,:,b], alpha)
|
53 |
+
|
54 |
+
return (sharpen_img * 255).astype(np.uint8)
|
55 |
+
|
56 |
+
# Create examples list using the images from the original code
|
57 |
+
examples = [
|
58 |
+
["samples/img1.jpg", 9.0],
|
59 |
+
["samples/img2.jpg", 7.0],
|
60 |
+
]
|
61 |
+
|
62 |
+
# Create the Gradio interface
|
63 |
+
iface = gr.Interface(
|
64 |
+
fn=sharpen_image,
|
65 |
+
inputs=[
|
66 |
+
gr.Image(label="Input Image", type="numpy"),
|
67 |
+
gr.Slider(minimum=1.0, maximum=15.0, step=0.1, default=9.0, label="Sharpening Strength (alpha)")
|
68 |
+
],
|
69 |
+
outputs=gr.Image(label="Sharpened Image"),
|
70 |
+
title="Poisson Image Sharpening",
|
71 |
+
description="Upload an image or choose from the examples, then adjust the sharpening strength to enhance edges and details.",
|
72 |
+
theme='bethecloud/storj_theme',
|
73 |
+
examples=examples,
|
74 |
+
cache_examples=True
|
75 |
+
)
|
76 |
+
|
77 |
+
iface.launch()
|